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2 ABSTRACT (continued)

submerged in light (air) and heavy (water) acoustic medium. These R
were verified experimentally by testing two duralumin shells, ('
a = B inches in radius and wall thicknesses h = 0.0514 and 0.1069 inch. »
The measured resonance frequencies were within 5% of those predicted in
alr and in water for identified mode numbers up to 34. The measured
mean-line driving point admittance also agreed well with the predicted
ones to within 3 dB.

Also in this study,,ﬁaé exact wave harmonic series and the approximate
Geometrical Theory of Diffraction (GTD) were used to predict the acoustic
near field of an elastic spherical shell insonified by an acoustic point
source. The predicted normalized, acoustic nearfield pressure computed
by the exact solution agreed very well with the measured ones for
frequencies up to ka = 30 . The nearfield acoustic pressure was also
computed by the GTD method with a locally reacting impedance assumed

_for the spherical surface. The decayed diffracted rays were then
computed and summed to give the total diffracted pressure spectra in
the shadow zone. Various surface impedances were assumed and the
resulting nearfield pressure was compared to the exact solution. The
GTD solutions were generally 60 dB or more lower than the exact ones,
even when one assumes the fairly hard characteristic impedance of
duralumin to represent the impedance of the shell. The source of the
discrepancy was traced to the structure-borne resonant vibration which
is not accounted for in the GTD. This means that the predicted acoustic
near field of general elastic structures as computed by the GTD method
will not agree with the exact solution for such structures.
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ABSTRACT

In this study, the acoustic near field of excited spherical
shells is investigated. The interaction of the acoustic medium with

the vibration response of an elastic spherical shell due to an

excitation by a point force or an acoustic point source is investigated

analytically and experimentally. Thus, only axisymmetric, nontorsional

motion of the spherical shell is considered, with a thin shell theory
that includes extensional and bending deformation.

The elastic spherical shell resonances were computed when in
vacuo and when submerged in light (air) and heavy (water) acoustic
medium. These were verified experimentally by testing two duralumin
shells, a = 8 inches in radius and wall thicknesses h = 0.0514 and
0.1069 inch. The measured resonance frequencies were within 5% of
those predicted in air and in water for identified mode numbers up to
34. The measured mean-line driving point admittance also agreed well
with the predicted ones to within 3 dB.

Also in this study, the exact wave harmonic series and the
approximate Geometrical Theory of Diffraction (GTD) were used to
predict the acoustic near field of an elastic spherical sheli‘
insonified by an acoustic point source. The predicted normalized,
acoustic nearfield pressure computed by the exact solution agreed
very wéll with the measured ones for frequencies up to ka = 30 .

The nearfield acoustic pressure was also computed by the GTD method
with a locally reacting impedance assumed for the spherical surface.

The decayed diffracted rays were then computed and summed to give the
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total diffracted pressure spectra in the shadow zone. Various surface
impedances were assumed and the resulting nearfield pressure was
compared to the exact solution. The GTD solutions were generally

60 dB or more lower than the exact ones, even when one assumes the
fairly hard characteristic impedance of duralumin to represent the
impedance of the shell. The source of the discrepancy was traced to
the structure-borne resonant vibration which is not accounted for in
the GID. This means that the predicted acoustic near field of general
elastic structures as computed by the GTD method will not agree with

the exact solution for such structures.
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roots of the Airy function

spherical coordinates

distance from the observer to the center of the
spherical shell

distance from the source to the center of the
spherical shell

acoustic resistance

mechanical resistance or structural resistance
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M
an

mn

Pn(cose)

Q

time

tangential displacement

radial displacement

time derivative of u and w , respectively
Airy function

derivative of A(x) with respect to x
Lamé parameter

bar velocity

plate velocity

Young's modulus

= dn/df), responance density
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Xvi

cylindrical Hankel function of the first and second

kind and order n , respectively

the changes in curvature due to bending of the
deformed middle surface of a shell about the

6 and ¢ coordinates, respectively

parameter of torsional deformation

modal acoustic loss factor

modal structural loss factor

differential operators

mass of the shell

fluid virtual mass

mechanical reactance

modal mass of the shell

Man/usn, mass loading factor

qu + Esn, total mass of the submerged shell
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Legendre polynomial of degree n

potential function
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xvii

R =r +r resistance of the submerged shell

f a1 mn

RS principal radius of curvature of the shell

RB’ R¢ principal radii of the curvature of the shell about

8 and ¢ , respectively

Sn : mode shape factor of the shell

T kinetic energy of the shell é
v total strain energy of the shell ;
Vb = awllz, bending velocity
Yd driving point admittance (DPA) i
Yc mean value of the DPA !
Zan =Ty, " inan , acoustic impedance

Z =r + iM , mechanical impedance |
mn mn mn 4
Za = Zmn/pc , normalized mechanical impedance ?1
Z =7 +1Z , total impedance of the submerged shell F

n an mn 3
a = (en?/120_(1 - vH1M4 '_

3

o decay factor for acoustic propagation

(h/a)2/12 , bending factor

cosH &

X wavelength !

™
1

3
Ui

>
]

n(n + 1) Y

=|
]

psh , surface density of the shell

un = sn + 1/2 , numerical variable
Y Poisson ratio
Qo P mass density of the fluid
ft Py mass density of the shell
oe, D¢, pn corresponding strains of Oe, 0¢, On
00¢’ Den’ p¢n corresponding shear strains of OO¢’ nOn' 0¢n

et L

*»’A-/
Eatc - oo




xviii

normal stresses on three mutually perpendicular faces
of an element of a shell

shear stresses

eiﬂ/3/61/2
n

angular frequency
= Cb/a , ring frequency

= w/wr , normalized frequency
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CHAPTER I

BACKGROUND

1.1 Introduction

The study of the vibration of a spherical shell submerged in an
infinite acoustic fluid medium is the main objective of this thesis.
The mechanical and acoustical energies are coupled by a fluid reaction
[1]. The vibration of a spherical shell has been studied by many
authors [2-8]. 1In a paper 'On the Vibrations of a Spherical Shell,"
Lamb [2] has investigated a membrane spherical shell for axisymmetric
vibration, and pointed out the existence of two infinite sets of normal
modes. Baker [3] has expanded the work given by Lamb, and demonstrated
experimentally the existence of normal modes predicted by the theory.
Kalnins [4] studied the bending effects on the vibration of a spherical
shell in vacuum, and labeled the lower branch as bending modes.
Wilkinson [5] showed that there are three branches in the frequency
spectrum when the equations of motion of closed spherical shells
include the effects of transverse shear deformation and rotatory
inertia.

Considering the vibration of a spherical shell submerged in
fluid medium, Junger [1l] examined the sound scattering of a membrane
elastic spherical shell, insonified by a plane acoustic wave. He
concluded that the scattering field of all elastic scatterers is the
result of the rigid body scattering and radiation scattering. 1In
another paper [6], he studied the same dynamic configuration but

excited by a point force. He demonstrated the radiation loading on




an elastic shell. Hayek [7] studied the vibration of the forced,

axisymmetric spherical shell in the light of the bending theory in an
acoustic medium. He concluded that the resonance frequency is sensi-
tive to the parameter (h/a) , especially for large mode numbers n ,
and the resonance frequency increases as n increases, no matter how
small is the ratio (h/a) . Lauchle [8] extended the work of Junger,
and demonstrated the interaction of a spherical acoustic wave with an

elastic spherical shell in fluid media.

1.2 Statement of the Problem to be Studied and the Mathematical

Model
In the present paper, the effects of fluid loading on elastic

spherical shells are investigated experimentally and analytically.
Mathematically, the shell is modeled using thin shell theory [9, 10],

a theory considered valid for a large number of practical applications.
Within the range of the thin shell theory, (h/a) < 1/20 [9], two
different thickness (h = 0.0514" and h = 0.1069") duralumin elastic
spherical shells of radii a = 8" have been used for the experiments.
In the thin shell theory, there are three approximations of different
orders: (1) membrane theory [2]--this theory neglects all moments
since the wall thickness of the shell is very small; (2) classical
theory [7]--this theory includes the bending factor (h/a)2/12; and

(3) improved theory [5]--this theory includes the effects of transverse
shear deformation and rotatory inertia. Investigation of the resonance
frequencies of the shells showed that the classical thin shell theory

is adequate. Due to the type of excitation of the shells, the basic

o
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equations are limited to the axisymmetric nontorsional vibration of a
spherical shell.

First, the equations of motion for the shells in this study are
derived by applying Hamilton's variational principle. To investigate
the effect of bending, the resonance frequencies are computed. The
equation derived for the natural frequencies of a submerged shell is
transcendental. The standard linear method was not useful for solving
such an equation. Therefore, a new method was developed for the
computation of the resonance frequencies. The new derivation also
gives a deeper insight into physical interpretations of the results.
This method, derived for the equations of motion of submerged cylind-
rical shells in terms of generalized coordinates, has been developed
by Hayek [11] to compute the resonance frequencies of submerged
shells. By applying this method to spherical shells, the resonance
frequencies of a submerged spherical shell were obtained.

The second problem considered is the acoustic radiation from
a point-force excited spherical shell. For a force-excited shell,
consider a unit concentrated, harmonic force exciting the shell at
6 = 0 . The shell is freely suspended in a fluid medium. The
driving point admittance was computed for such a loading and measured
experimentally. Furthermore, the expressions for the resonance
density of the shell was derived for high and low frequencies. These
were used in the characteristic admittance theory of Skudrzyk [12] to
predict the meanline of the driving point admittance of a point-force

excited spherical shell in vacuo.
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The next problem considered is the acoustic point-source excited
shell. The mathematical model for the shell motion is the same as that
given above, but the shell is insonified by an acoustic spherical wave.
The effect of the fluid loading on the shell is investigated for the
near field analytically and experimentally. Furthermore, the radiated
pressure due to the vibration of the shell responding to the pressure
of the incident spherical wave will be examined analytically by use of
wave harmonic functions. The internal damping is also considered in
this problem.

Finally, the diffracted pressure field due to a point source in
the vicinity of a spherical shell was re-evaluated by use of the
Geometrical Theory of Diffraction (GTD) due to Keller [13-15]. This
approach was taken because the wave harmonic function expansion would
not be possible for shells that are not regularly shaped. The approach
requires the knowledge of the impedance of the surface around which
acoustic rays propagate. Comparison of the exact wave harmonic
solution with the GTD method was made.

The model of the problems being studied consists of a spherical
elastic thin shell excited by an acoustic spherical wave or a unit
concentrated harmonic force. The shell is submerged in an infinite
compressible acoustic medium having a mass density p , and the sound
speed ¢ . As shown in Figure 1.1, the shell has a radius a , and
the thickness of its wall is h . The mass density of the shell is
pS , while Young's modulus and Poisson's ratio are E and V ,
respectively. The shell is located at the origin of the spherical

coordinate system. The source is located on the z-axis at the point

O




S(ro,0,0)

R(r,0,¢)

Figure 1.1 Configuration of the spherical shell
in the spherical coordinate system




S(ro,0,0) , a distance T from the center of the shell. The observer
point is R(r,8,9) , where r 1is the observer distance from the center
of the shell, and € 1is the aspect angle. This arrangement will reduce
the problem to the study of an axisymmetric vibration of a spherical

shell as well as the pressure field.




CHAPTER II

FORMULATION OF THE THIN SPHERICAL
SHELL'S EQUATION OF MOTION

2.1 Introduction

In this chapter, the equations of motion of a submerged
spherical shell are derived by applying Hamilton's variational
principle [16, 17]. For a better understanding of the dynamic inter-
action between a submerged spherical shell and the surrounding J
acoustic medium, the equations of motion are also derived in terms of
generalized coordinates {11]. CGCenerally, the analytic formulation is
verformed for idealized conditions. For thin elastic spherical shells
submerged in a fluid medium, it is assumed that [9, 101}:

1. The material of the shell is linearly elastic,
isotropic, and homogeneous--this means that the i
material of the shell obeys Hooke's law.

2. The ratio of the thickness to the radius is
(h/a) < 1/20 , so that the thin shell approximate
theory can be used.

3. The displacement of the shell is small when compared
to the thickness h .

4. The shell is freely suspended; straight fibers of
the shell which are normal to its middle surface
before deformation remain straight and normal to
the deformed middle surface and do not suffer any

extensions as suggested by Kirchhoff; and the normal




stresses acting on planes parallel to the shell
middle surface are neglected as compared to the
other stresses as introduced by Kirchhoff.

5. The acoustic pressure (disturbed pressure) has a
linear relation with the condensation of the fluid.

6. The fluid is compressible and inviscid.

2.2 The Equations of Motion

In the present section, the dynamical response of an elastic
body is considered where the applied forces, the displacements, etc.,
are time-dependent. To derive the equations of motion, Hamilton's
variational principle is applied. The variational integral requires
expressions for the kinetic energy T and the strain energy V of

the system as well as the external forces as derived from a potential

function Q . Hamilton's principle states that:
t2 B
§ J (T-V+Qdt = 0 , (2.1)
1

where tl and t, are the initial and final time states, respective-
ly, of the system. The symbol & represents diiferential variation.
There are many different approaches to obtain an expression for
the strain energy of a thin shell. 1In this study, the expression for
the strain energy density of thin shells as developed in References (9]

and [10] will be used. Generally, the expression for the strain energy

for shells is defined by:




4 ey

v = 1
vV = 2 I (°e°e + 0¢p¢ + %°n + 06¢06¢ + %9non + cd)np(bn)dv ’
v

(2.2)

where 06, c¢, On are the normal stresses on three mutually perpen-
dicular faces of an element of the shell, pe, p¢, pn are the
corresponding strains, 06¢’ oen, o¢n are the shear stresses on these
faces, p6¢, pen, p¢n are the corresponding shear strains, and dv is
the volume of the element. The stresses on the middle surface are
shown in Figure 2.1.

By applying the assumptions of Kirchhoff in Section 2.1, the
stress O and the strains p, , P can be neglected as compared

n On ¢on

with the other stresses and strains, respectively. Therefore, Equation

(2.2) may reduce to:

vV = %-J (04pg + OoPp * ce¢pe¢)dv . (2.3)
v
Expressing all stresses in terms of strains, expanding the
strain in a Taylor's series of (h/RS) , and neglecting terms of the
order (h/RS)3 and higher, where RS is the principal radius of

curvature of the shell, one obtains an approximate expansion for the

strain energy density:

2
o]
vV = —Eb 2 _ P
vV = 201 - vz) [g[(pg + O¢) 21 v)(Oep¢ —7?—)]A6A¢ded¢
3 2
Eh I . ) ,
Bk, +K)2 - 20 - WREK, - —2) A A dede,
24(1 - v?) Sl 6 ¢ oy = 5 ) 1Aghy
(2.4)

where E 1is the Young's modulus, V' is the Poisson ratio, Ae and

A¢ are the Lame parameters, Ke' and K® are the changes in curvature




Figure 2.1

Direction of the stresses OS acting
on the middle surface of the shells.
[ I DO s p¢ are the orthogonal

n
unit vectors.
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due to bending of the deformed middle surface of a shell about the 6
and ¢ coordinates, respectively, and K6¢ is the parameter for
torsional deformation. The integral in Equation (2.4) is the surface
integral over the middle surface. It should be noted that the
extensional and shear energy is represented by the first integral,
and the second integral represents the bending and torsional energy.
For axisymmetric extensional and bending motion of the shell,
Equation (2.4) can be further simplified because the shear and
torsional factors vanish for axisymmétric motion. The variables in

Equation (2.4) are, therefore, expressed as:

p = _l_él._i
3] Ae 3 Re
0. = _1_3_59_‘1_1
¢ AGA a8 R¢
pe¢ = O s
K 1 3 (l 8w+u)+ 1 aAe (1 3w~]
= =2 (2 ¥ 9 = (+ =] ,
N Ae 26 Ae 6 0 A9A¢ 3¢ A¢ ¢
K. = J_ﬁ(_Lﬂ+L)
¢ ASA 36 A6 30 R6
and
K6¢ = 0 . (2.5)

where u = u(8,t) and w = w(b6,t) are the tangential and radial
displacements, respectively, and Re and R¢ are the radii of the
curvature of the shell about 6 and ¢ coordinates, respectively.

Consider the geometry of a spherical shell, then, A0 = a,

A = a sin0 , and RO = R, = a . The geometric configuration is shown

¢ b

in Figure 2.2. Substituting the above relations into Equation (2.5),




=
12
z ~
|
Figure 2.2 Orientation of the vectors of
a spherical shell
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one obtains expressions for a spherical shell:

o R R T e T T T
q\

= lfou _
P = gl -l
pq) = ‘;[UCOtG - w] s
Pop - 0 R
2
1 Ow du
R, = L Py dy
8 aZ 862 a6
1
K¢ = = [u + 36] cot8
a
1 and )
K6¢ = 0 . (2.6)

The total kinetic energy of the shell is:

1 2 .2
T = 2 ps J (1" + w)dv
v
T
- mo, ha’ J @ + %% sinddd , (2.7
(o]

where G and w are the time derivatives of u and w , respectively.
The external forces of the considered problem are the normal component
of applied surface forces, pi (acoustical or mechanical forces), and

the reactive normal surface force, P> due to the fluid loading.

Therefore, the potential function due to these two force systems are:

O
[

- L (pr + Pi)wds

"
- om a2 J (p_ + p.)w sinddod . (2.8)
o r 1

Substituting the strain and kinetic energies and the potential function
into Equation (2.1), one obtains the coupled equations of motion of a

spherical shell in terms of displacements u and w @

Tesiwr




2 o 5u 2
1+ B)[(v + cot Bu ~ cote-gé - SEEJ + (Rcot“ @+ 1 + v+ yR)
2 3 2 2
'&Meé%-63%+1;vpazi%= 0 (2.9)
38 36 S ot
and
»u 52u 2 . s
B = + 2Bcotd < - [(1 + v)(1 + B) + Beot” 8] =
263 39 26

(1 + B)(1 + vycotd]u

+ [Bcot30 + 3Bcoto

4 3 2
v (1 +v+ cot28) 2w

30 362

+

>

+

[N
0
o

E|'D
|

+ (2cotb + cot36 - vcotd) %%]+ 2(1 + v)w

1 -2 = 9w L L- v2
E s at2 Eh

2 -
a (pr+pi) = 0 |, (2.10)

where R = (h/a)2/12 is the bending factor.
By changing the variable 8 in the foregoing equations to a
new variable n = cos® , and using a time harmonic variation for all

variables:

. _
u o= ume M, W o= wme X,

and

t

t P_(nye ™ , (2.11)

-iw
pi = Pi(n)e ’

Equations (2.9) and (2.10) can be rewritten in the following form:

_ 242
LU+ LN = (=) (2.12)

P o

™
a6




and
L U+L W = (1- VZ)QZW - l—:—yi‘az(P + P) (2.13)
wu ww Eh i r ’ :
where the operators Luu’ Luw’ qu, wa are given by:
2.1/2 4° 2.1/2
L = - (1+B8[Aa-n) ——3-(1 -n’) +@Q-v ,
uu
dn
(2.14)
2,1/2 d da 4 g2
L, = @-1n9 [B(L - V) an (1 +Vv) gn+ B V7] i
(2.15)
- _ _ d _.2\1/2 2d ._.2,1/2
L= -{B -V - A+W] g @ -nH77+ 8V - )14}
(2.16)
and
4 2
wa = BV 4+ B - VIV + 2(1 + V) , (2.17)
where
2 _ 4 _ a2y d
2
Qz = pswzaZ/E = ELi- is the normalized frequency,
Wy
b
w = — 1is the ring frequency
T a
and
¢, =/% (2.18)
b e
s
In Appendix A, a detailed derivation of the equations in this section

is given.
For this problem, the tangential and radial displacements can
be expressed in terms of Legendre polynomial of degree n as follows:

® dP_(n) ®
v = 1 v a-dYr—— Jum = ] wrm o,
n=

(o] =0

! (2.19)
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and
o o0
p,o= ] P P(M , P =] p_PMmM . (2.20)
n=o n=o

Then, on substitution of these two equations into Equations (2.12) and

(2.13), one obtains two algebraic equations in terms of Un and wn :
2,2
{@-vHe - 1+ B)[Xn - (- V)]}Un
+1{8[A - Q-1+ AQ+nw =0 (2.21)

and

2 2
[AnB(l -Vv) - (1 +v) - an ]Un + [an - B(1 - v)xn

2
2.,2 _ 1 -v 2
+2(1+vVv) - (1L -v)Q ]wn = T (Pin + Prn) ’
(2.22)
vhere An =n(n + 1) .
2.3 The Natural Frequency, the Mechanical Impedance, and the Ratio

U /W of the Shell in Vacuo

o

Before proceeding to present the solution to shell vibration
excited by an acoustic point source, one should examine the free
vibration of a spherical shell. For a freely vibrating shell, there
exists no applied force, and the shell in vacuo is not subject to any
reactive forces due to the fluid loading effect. It is evident that
the foregoing Equations (2.21) and (2.22) become two homogeneous
equations with two unknowns Un and Wn . The determinant of the
equations must vanish, which results in the frequency equation as

follows:
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- vH%% - 18 2+ L+ BOA+ (L +30) - B(L - WA - vDR?

3

+er 3 - 43An2 +[BG5 - v3) + (1 - vz)nn - 201 +B)(1 - vY) = o.

(2.23)

This is a quadratic equation in Qz with only two distinct positive
roots for each mode number n . The larger root of each mode belongs
to the upper branch, and denoted by Qh . The smaller root, 92,
belongs to the lower branch. The roots th and an are the

natural frequencies of the spherical shell. For n = 0 , there is

only one positive real root:

This frequency represents purely radial motion, which is referred to
as the "breathing mode." This mode's elastic energy is due to the
extensional deformation only because the shell vibrates only in the
radial direction, and the radius of curvature of the shell is con-
stant. The natural frequencies of duralumin shells of radius a = 8
inches and thickness h = 0.1069 inch and h = 0.0514 inch were
computed and tabulated in Tables 2.1, 2.2, and 2.3, respectively, and
also plotted in Figure 2.3. It is clear that the natural frequencies
of the lower branch for membrane theory, B = 0, are independent of the
shell's thickness, while the natural frequencies of bending modes,
for B > 0, vary with the thickness. However, the upper branch
frequencies do not change significantly with B . For a thin shell,
where the ratio h/a is very small such as the ratio 0.0064 shown in

Figure 2.3, the membrane theory may be applicable at low frequencies
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or for small values of the mode number. It is interesting to note
that ( approaches unity when the mode number goes to infinity for
B =0 . Different asymptotic approximations to the roots of

Equation (2.23) can be obtained as follows:

2 N Xn -2
Yo Y FTE o 8 (2.25a)
2, 8
Q, ~ —B_- 41 s Q>1 (2.25b)
&n 2
1-v
and
2 An+1+3\)
Ym " 5 , n>0 . (2.25¢)
1-wv

For a thick shell (h = 0.1069") or thin shell (h = 0.0514™),
Equation (2.25b) and (2.25c) predicts the natural frequencies with
10% accuracy for n > 6 for the lower branch and n > 3 for the
upper branch. These approximations are better than those given by
Feit and Junger [18] which eliminates the unity in Equation (2.25b).
The unity in the formula for the lower branch represents the membrane
energy and the first term represents the bending energy. Thus,
neglecting this factor, the 107% accuracy can only be obtained for

n > 20 for the lower branch. If n is large enough, the unity can
be neglected and the shell resonances approach those of a plate of
equivalent surface, i.e., the shell resonances fall in the so-called

"plate range," where the curvature effects are no longer important.

When £ < 1 , the lower branch roots given by Equation (2.25a) are
within 57 for n < 10 . These frequencies are shown in Figure 2.3.

The modal mechanical impedance of a spherical shell is inde-

pendent of the type of excitation. It just indicates how the shell




itself responds to a modal force. In order to determine the modal
mechanical impedance of a shell, the problem of the forced vibration
of a shell in vacuo shall be considered. Since the structure is in
vacuo, there is no fluid pressure acting on the shell. The modal
fluid pressure prn in Equation (2.22) should be set to zero. Then,
solving the equations of motion in Equations (2.21) and (2.22), one

obtains the modal mechanical impedance of the spherical shell:

L T > S (2.26)
. - s .
mn Wn iwwn (1 - vz)wa Dn
where
2.2
Noo= @-vHRt - 82+ @A+ 1+ v -B-V]A-VOR
#822 — el + 865 - VD + - VD - 2a+ -V,
and
2.2
b = -(l+6)}\n+(1—\))(1+8)+(1—\))Q
When =0, Z reduces to the modal mechanical impedance

mn

of a membrane shell [8]. The modal ratio of the tangential to radial

displacement amplitude Un/wn is obtained from Equation (2.21) as

follows:
U B(A_ - 1 -]+ QA+ V)
n n
wo- R . (2.27)
n @A+BD - A-w]-a-ve
The modal ratio depends on the excitation frequency © . The modal

ratio for two duralumin spherical shells at the natural frequencies
is shown in Tables 2.1, 2.2, and 2.3. It decreases with increasing n

(and natural frequency) for the lower branch, while it is fairly

constant for the upper branch.
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2.4 The Derivation of the Equations of Motion of a Spherical

Shell in Terms of Generalized Coordinates

Although the equations of motion of a spherical shell have been
derived, the derivation of the dynamic equation in terms of general-
ized coordinates is also necessary. Equations (2.21) and (2.22) in
terms of the tangential and the radial displacements cannot, in some
ways, provide a clear-cut mathematical model from which one can
immediately identify physical properties. However, when the dynamic
equations are expressed in the form of a differential equation in
terms of generalized coordinates, the model is mathematically
identical to that of a single oscillator system.

A derivation of the shell's dynamic equations is accomplished
by applying Hamilton's principle as presented in Section 2.2. The
displacements u and w are expressed in terms of generalized

coordinates as follows:

[
"

1T (8)q_(t) (2.28)

and

€
]

I W (@)q (t) , (2.29)

where ﬁ; and W are the mode shapes of the tangential and the

n
radial component of the displacement as defined in Section 2.2, and
qn(t) are the generalized coordinates.

Following the preceding derivation, the variation of the

kinetic energy and the potential function of external forces are:

—~ iv2 =2, .
= U bd
8T u ( n + Wn)qn(Sqn (2.30)
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and

§Q = - (PuUn + wan)(sqn . (2.31)

where U = psh is the surface density of the shell, Pu and Pw

are the external forces on the surface of the shell in tangential and

radial directions, respectively, and ﬁn represents the acceleration.
For the free vibration of the shell, &Q = 0, and

qn(t) = exp(~iwt), where ®w 1s the natural frequency root of

Equation (2.23), then, from Hamilton's variational principle, one

obtains the strain energy:

J&vds

[ &1ds

-2 =2 =2
- B qnéqn £(Un + Wn)ds , (2.32)

th mode.

where wn is the natural frequency of the n
For the forced vibration, one has the equation of motion

expressed in terms of generalized coordinates:

F_(t)
. 2 _ _n
qn*'wn 9, = M ’ (2.33)

where the generalized force is:
Fn(t) = jS(PuUn + wan)ds , (2.34)

and the generalized mass (modal mass) is:

n

M= EJ (ﬁrzl +W§)ds i (2.35)
s

@




For a spherical shell:

2T
.= =2 =2, 2
Mn = U I I (Un + Wn)a sinf6 d06d¢
o o
2 -+1 Ui 2 dPn(n) 2 2
= 2ma” u — 1 -n")|—— +P_(M)| dn, (2.36)
2 dn n
W
-1 'n
where
U dp
= 0 /i_npZ_n
n
and

W o= B (). (2.37)

Using the following integrals:

+
1(1 R FaM 2 L me D
dn 2n + 1
~1
and
+1
2 _ 2
J Pn(n)dn = nil s
-1
one has:
2— U2
_ 4maTu ﬁlf _ M
My = 2+l [An[wnj R B e ’ (2.38)

where Sn = Xn(Un/W“)2 + 1 1is the mode shape factor of the shell, M
is the total mass of the shell.

Three kinds of forces will be considered, namely, the excitation
force, the reactive acoustic pressure, and the internal structural
damping force of the system. The generalized applied force, acting

normally on the surface, is given by:
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Fln = JS PW]. Wn ds

2 1_
2Ta r wn Pin dn , (2.39)
-1

and the acoustic pressure on the surface of an axisymmetric shell is:
p = -2 W = -2 W 3J R (2.40)

where the acoustic impedance is:

h(l)(ka)

an - ipc h(l)' = r - iwM , (2.41)
n

n n
(ka) a a
where T and Man represent the modal acoustic resistance and
reactance (virtual mass), respectively. Substituting Equation (2.40)

into Equation (2.34), one has the generalized acoustic pressure:

. —2
F,o o= -2, 4 JS Vo ds . (2.42)

By applying Equation (2.37), an becomes:

4Ta

FZn T T 7n+1 [ran 94, + Man qn] ‘ (2.43)

In order to derive the structural damping force, consider the
damping force to be proportional to the velocity, and the generalized

force thus becomes:
21 41 ﬁi ] —2 2
= - K§ — wWooa dnd
Fa Kq J J [ -+ 1) n e, (2.44)
1)
o -1 n

where K 1is a proportional constant. By-using the result of

Equation (2.38), one obtains:




s e LT - A=

F = -M Kgq . (2.45)

Replacing the generalized forces in Equation (2.33), the modal

dynamic equation of the shell becomes:

- . 2—
+ + + i S = .
(Man usn)qn (ran rsn)qn t a9, fn ’ (2.46)
+1
where r =KS5 _and f = n+1 J W P, dn .
sn n n 2 -1 n in

It is evident that the differential Equation (2.46) is similar
to that of a damped single oscillator [12]. The coefficient of ﬁn
represents the total mass, Mt’ of the system which is the sum of the

modal mass, Mn’ of the shell and the accelerated fluid virtual mass

[12] due to the fluid loading. The coefficient of ﬁn , consisting of

b4

the radiation resistance, ran’ and the structural resistance, Ten

corresponds to the resistance factor, R_.. The coefficient of gq

f n

corresponds to the stiffness of the shell's elasticity.

Rewriting Equation (2.46), one obtains:

K T +1
-+ —
- WS wz J wnpindn
g+t +—"—aq = —F
n M n M n M
an an an 2 \—
- — _1 S
1+ S 1+_S [l+_s);n+1)11
H n 8! n H a
(2.47)

For a freely vibrating shell in an acoustic medium, let

q = Anexp(-iaht) , where the natural frequency of the submerged

shell 56 » Equation (2.47) gives an expression for wn as:

w2 2
52 _ n - mn
n M 1+ MR ’
1+ 22
Usn

4 w.!wl‘u“‘i‘l‘jﬂkw b
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where wn is the natural frequency in vacuo, and the factor,
MR = Man/isn’ represents the ratio of the additional fluid virtual
! mass to the unloaded shell modal mass.
It is evident from Equation (2.48) that the resonant frequency
of a submerged shell is affected by the virtual mass, Man’ and the

modal mass, Mn = uSn. In other words, it is determined by the mass

e

loading factor, MR' The virtual mass, which is a function of the

frequency, adds to the inertia of the shell. The contribution of this

e

mass to the total mass of the system depends on the acoustic character- ‘
istic impedance pc . The modal normalized acoustic resistance,

ran/pc, and reactance, Man/pa, are computed from Equation (2.40) and

L W,

plotted in Figures 2.4 and 2.5, vs the nondimensional frequency ka ,
respectively. The modal reactance increases with frequency and then

‘ decreases rapidly toward zero as the frequency increases. It means

that the virtual mass is low at high frequencies. The normalized modal
acoustic resistance increases from zero to peak value before it reaches
its asymptotic value of unity for high frequencies.

The natural frequencies of a submerged shell Bn are obtained

from Equation (2.48) by use of an iteration technique, since the natural

frequencies in vacuo, w , are already known. These are tabulated in

Tables 2.4 and 2.5 for the two shells and plotted in Figures 2.6 and
2.7, 1t is evident that the submerged shell natural frequencies of the
lower branch are lower than those for a shell in vacuo. However, the
submerged shell natural frequencies of the lower branch approach those
for a shell in vacuo at high frequencies. This is evident when one
examines Equation (2,48) since Man vanishes for high frequencies.

However, for a shell vibrating in air, the natural frequencies are the

” , A‘,A -;‘:u”.' o '
R T Y




~ omam. .-

- et A

ACOUSTIC RESISTANCE

o.M 0. 10 1. 00 10. 00 100. 0O
DIMENS IONLESS FREQUENCY (KAJ
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same as those for a shell in vacuo for both branches (see Figures 2.3
and 2.6) because of the light acoustic loading.

For a shell submerged in water (heavy fluid loading), the factor
MR for the lower branch is significant when compared to unity as shown
in Tables 2.6 and_2.7. The resonant frequency for a submerged shell is
i thus lower than the natural frequency in vacuo as shown in Figures 2.7

and 2.8. The mass loading factor, M,, increases up to four times the

R,

mass of the shell for the mode shapes of the primarily radial modes of
] the lower branch (Un/wn) << 1 (strong fluid coupling) except that
(Un/wn) =1 (Ql = 0) for the first mode. Thus, the natural fre-
quencies in water are reduced significantly for the lower branch at
low mode numbers. However, when MR decreases to less than unity for
high mode orders of the lower branch (higher frequencies), the natural
frequencies in water are slightly decreased from those in air. For
the mode shapes of the upper branch, which are primarily tangential
(Un/wn) <1 (weak fluid coupling), the virtual mass of the accelerated
fluid is negligible when one examines MR for the higher branch in

Tables 2.4, 2.5, 2.6, and 2,7. 1In other words, the heavy fluid

loading significantly influences the branch having a strong coupling

(lower branch) and slightly alters the frequencies of the first few
modes of the upper branch only (weak coupling).

The modal acoustical and structural loss factors, Lan and Lsn’
respectively, can be defined from the modal single oscillator modal in
Equation (2.46) as follows:

r

L = an , (2.49)
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The loss factor, Lrn’ is tabulated in Tables 2.4 and 2.5 for air and

in Tables 2.6 and 2.7 for water. The total impedance is defined as:
Z = Z +12 , (2.51)

where the acoustic impedance, Zan’ is given in Equation (2.41) and the
mechanical impedance, Zmn’ is given in Equation (2.26). At resonance,
the reactive part of Zn must vanish, i.e., Im(Zn) =0 . Thus, the
modal impedance of the submerged shell is purely resistive at resonance.
The total resistance of the submerged shell is the :um of the structural

and acoustic loss factors.

2.5 The Resonance Density of Spherical Shell

In order to obtain an approximation of the shell's character-
istic admittance, a study of the spherical shell's resonance density

is necessary. The resonance density [12] is defined as:

1 _ dn
E = dw
n
d
- 24 (2.52)
b

2
where w 1is the resonant angular frequency and Cb = (E/ps)l/ . By

differentiating Equation (2.23) with respect to mode number n , the

resonance density is expressed as:

dn 41 - u“)cz - 2
& n (2.53)
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]
i where
! a_ = (20 + 1)(1 + VB + 28)) ,
3 n n
!
! 2 2 2
: (2n + 1)[38}\n - SBAn + B(5 - v) + (1 -v)]
; b =
! n 1 - v?)
4
! 2
5 Cn=1+3\)—B(1-\))+)‘n(1+\)8)+6)‘n
§ At low frequency or in the membrane range § < 1 , the parameters in
i Equation (2.53) can be approximated as follows:
'
i v |
N
‘ a, (2n + 1) .
A .
bnw(2n+1) 1
] 4
and »
" ?
c v (L+3v+1) . (2.54) 1
n n 1
Then, Equation (2.54) with n and Xn substituted for Equation (2.25a) f
‘ can be expressed approximately as:
i
2 Q f
%% N 2 /f.i , Q<1 (2.55) R
‘ @-2ohHv1 - j
B
which is independent of the shell thickness, because this is in the '4
\ membrane range. In the membrane range, the resonance density increases .
A
as £ 1increases [sce Equation (2.55)]. The resonance density reaches

a maximum {see Equations (2.53) aund (2.54)] when § 1is given by:

n
2 v N
Q V) 5 + 1 . (2-56)

1 - v

Thus, the maximum resonance densitv is5 given by:
’ & -

Y 2
%g " 0.*33/?1/
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It is quite clear that, in general, the maximum point is not at =1
except for a membrane maximum, when B = 0 . Due to introduction of
the term Bki , the maximum occurs at & > 1 . Actually, the resonance
density is an inverse slope of the frequency curves shown in Figures
2.6 and 2.7. Thick shells' natural frequencies leave the membrane mode
at higher frequency when compared to thin shells. The take-off point
from the membrane curve in Figure 2.8 is the maximum point of the
resonance density. Therefore, it is expected that the maximum point
of the resonance density is closer to unity as the thickness of the
shell decreases and that the peak becomes higier (see Figures 2.9 and
2,10). For frequencies above (I = 1 , the resonance density decreases
slowly with frequency.

At high frequency, 2 >> 1, as the resonances approach the plate
range, it is convenient to use the asymptotic form. By differentiating

Equation (2.25a), the resonance density for the spherical shell becomes:

21/4
dn &~ 1 (1 -V 1
o) v [ 8 ] 1737 13375 for >1, (2.57a)
R e
Q
and, in the plate range, becomes:
2y1/4
dn o 1i1l - v 1
LS >
an 2[ B ] 91/2 for > 1 , (2.57b)
with a maximum value given by:
do % o.amyet/? (2.57¢)

Figures 2.9 and 2.10 show the resonance density of the two

spherical shells in vacuo. Curves (1), (2), (3), and (4) represent,
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respectively, the resonance density for the exact [Equation (2.53)],
the low frequency approximation [Equation (2.55)], the density for
midrange frequencies' approximation [Equation (2.57a)], and the high
frequency plate range [Equation (2.57b)]. The maximum point in the
resonance density spectrum separates the resonances into membrane range
and plate range. Resonances between those two ranges are in the

so-called "coupling range."

The segment of Curve (1) for £ > 1.5
matches with that of Curve (4) for the plate range, and Curve (3)

o
matches Curve (1) down to £ v 1 . Curve (2) matches with Curve (1)
up to £ = 1.0 . In the membrane range, both shells have the same
resonance density [see Equation (2.55)]. The higher resonance density
of the thin shell implies that it has a higher response when one

considers the driving point admittance (DPA) because the mean value of

the DPA [12] is:

(2.58)

where Mn is the modal mass of the spherical shell [Equation (2.38)].

Figure 2.11 shows the mean value of the DPA of the shells. For Q>1 ,

[1 _ v2]1/4
Ta B

Y = - (2.59)

c ACan Q1/2[1 _ 1%13/4
Q
and
n, 2 -1
Yc v (8o psh) for Q> 1 . (2.60)

When £ <1, En in Equation (2.58) is replaced by Aw because the
shell does not have many modes in the membrane range, and also, a 3 dB

is added to Equation (2.59) due to the imaginary part of the mean value

of the DPA (see Reference 12). Thus,
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h = 0.1069" , in vacuo




¥ = 2(n + 1) , <1,
c %

sazpsh/é(l - v3) a0
where AQ = (wn+1 - wn) / w,
2
and 36 = Eh 2
1208(1 -v)
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(2.61)

&




CHAPTER TIII

POINT FORCE AND SOURCE EXCITATION OF A SPHERICAL SHELL

3.1 Introduction

In this chapter, the problem of the forced vibration of the shell
in an acoustic medium is presented. The two significant factors which
affect the response of the excited shell are the mechanical and the
acoustical impedances. The mechanical impedance is due to the response
of the shell in vacuo, and the acoustical impedance is due to the fluid

loading.

3.2 The Point Excited Vibration of a Shell

The response of a point excited shell in an acoustic medium is
analyzed in this section. The fluid pressure Prn in Equation (2.22)

is no longer assumed to be zero. Since the radiated acoustic pressure

P is an outgoing wave, it can be expressed in terms of the spherical
Hankel function of first kind and order n . Therefore,
P = Ch, (ko) (3.1)
or
[+
p, = 1 Cch (ke (M
n=o

where Cn is a modal acoustic amplitude, and k 1is the wave number
w/c .

The inertial force of the shell balances the acoustic force due
to the fluid reaction at the boundary of the shell r = a . Then, by

applying Euler's equation, one obtains the coefficient:
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= ¥ '
Cn = ipcwn/hn(ka) . (3.2)
Substituting Cn into Equation (3.1), one has:

[+ ]

P (r,n) = §=° 1pc[hn(kr)/h;(ka)]ﬁnPn(n)
= ) Z oMb (ko) /b (ka)IW P () (3.3)

=0

where Zan = ipc[hn(ka)/h;(ka)] is defined as the acoustic radiation

impedance.
The radial displacement of the submerged shell is obtained by

solving the two simultaneous Equations (2.21) and (2.22) at the boundary.

The radial displacement is:

Wn = - (pin + pm)/inmn at r=a , (3.4)

and the radial velocity is given by:

-

W= Gyt )2 . (3.5)

The fluid pressure on the surface of the shell is deduced from Equation

(3.3) to be:

prn(a) = - Zanwn . (3.6)

where the negative sign denotes the outward pressure.
The radial velocity and the radial displacement as expressed in
terms of the applied force and the total impedance of the shell by

combining Equations (3.5) and (3.6) are, respectively:

wn = pin/z . (3.7)

n
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where Zn is the modal impedance of a submerged shell, and

wn = 1pinﬁ»zn . (3.8)

The impedance of the system is no longer solely the mechanical impedance,
but the sum of the mechanical and the acoustic impedances. This
impedance will cause a change in the displacement and the resonance
frequency from those in vacuo.

The driving point admittance and the response pressure field are
examined first. Consider a unit concentrated force which can be
described by:

(1/4ma%) I (20 + 1P (M)
n=o n

]
[}

(]
o~

pinPn(n) . (3.9)
n=o

From Equation (3.7), the modal velocity of the shell in an acoustic
medium is given by:

W= 331{§-¥ ) (3.10)

n 4ma” 2
n
The radial velocity of the submerged shell is given:

(20 + 1)P (n)/(4ma’z ) i (3.11)
n n

e
[}
Se0~18

=0

When 2
an

0 1in the above equations, the structure is vibrating in
vacuo.

The driving point admittance (DPA) is defined as the ratio of
the radial velocity of the shell to the applied force at that particular

point. The DPA is obtained directly by setting n =1 [Pn(l) =1} in
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Equations (3.9) and (3.11) and taking the ratio,

[+ o]
Z 2n + 1
n=o Zn
Y = —— . (3.12)
d 4ﬂaz

Finally, substituting Equation (3.10) for ﬁh into Equation (3.3), the

pressure field of a submerged shell is:

1 Zan hn(kr)
pd(r,n) = 3 2 (2n + 1) Z h'(ka) P (M) . (3.13)
4mma n n

At resonance, the imaginary part of the total impedance Zn is

equal to zero. Then, %1 reduces to the sum of the internal damping
rsn of the shell and the acoustic resistance ran , where
r .= Real[ipchn(ka)/h;(ka)] .  The modal impedance of a submerged 1

shell is expressed conveniently as:

Z (@ = Z + 2
n an mn

[rmn + ran(w)] + i[an(w) - wMan(w)] .

where Z =r + iM and 2Z =r - iwM , for mode number
mn mn mn an an an

n=0,1, 2, ... j-1, j, j+I, ....

3.2.1 Numerical Analysis. Calculations are made for two

different duralumin spherical shells when submerged in air and water.
The physical properties of the shell material, fluid, and the dimensions
of the shellsare listed in Table 3.1. The computation was performed on
an IBM 36/72 digital computer.

Before proceeding to examine the behavior of the DPA of the
shells, an understanding of the physical role the mechanical and the

acoustic impedance play in the DPA, and the relationship between them,




- tthmn v

P

TABLE 3.1

SPHERICAL SHELL AND ACOUSTIC MEDIA

Thickness (h)

Radius (a)

Young's Modulus (E)

Poisson's Ratio (V)

Mass Density of the Shell (ps)

Mass Density of Air (p)

59 ]
:
1l
PHYSICAL PROPERTIES OF A DURALUMIN ;
i
0.0514", 0.1069"
8" ‘
. ]
1.037 x 10" psi
0.335 G
2.649 x 107 1b. sec.?/in.”
1.15 x 1077 1b. sec.zlin.4
9.645 x 107 1b. cec./in.”

Mass Density of Water (P)
Velocity of Sound in Air (c)
Velocity of Sound in Water (c)
(ka)air

(ka)

water

(pc)

water

(pc)air

1.356 x 10% in./sec.

4

6 X 10" in./sec.

o,

0.3033 x Q

2 v q

6.85 x 10~
5.79 1b. sec./in.3

1.68 x 10~3 1b. sec./in.>
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is necessary. The resonant modal mechanical impedance Zmn , the
acoustic 1lmpedance zan , the total impedance Zn , and the velocity ﬁn
for an undamped shell, i.e., nE = (0 , are listed in Tables 3.2 and 3.3,

and Tables 3.4 and 3.5 when submerged in air and water, respectively.

For a damped shell, i.e., nE =6 X 10—4 {19], these values are listed
in Tables 3.6 and 3.7, and Tables 3.8 and 3.9 when submerged in air and
water, respectively. As mentioned in the previous section, the total
reactance, i.e., the imaginary part of Zn , 1s zero at resonance. But
this is not true for calculation of the resonances to within 10_3; hence,

Im(Zn) is not exactly zero.

Since the magnitudes of the mechanical and acoustical reactances

are close, the error in their sum, when compared to the sum of the modal

mechanical resistance rmn , and the modal acoustic reactance ran’ can
be significant. Thus, when evaluating the response at resonance, the
sum of an and Man is set to zero to ensure that the response at
resonance is dependent purely on the sum of rn and Con *

In air, the resonances of both the lower and upper branches shown
in Tables 3.2 and 3.3 are close to those in vacuo because the magnitude
of the reactance Manﬁon) of the acoustic impedance Zan(wn) is of the
order of lO_3 in the lower branch and of the order of 10_4 in the upper
branch. This means that the mass ratio factor MR is negligibly small
as compared with unity, and the resonances are nearly the same as those
in vacuo. This was already shown in Figures 2.6 and 2.8. The DPA
response of an undamped shell is dominated by the nth mode near the nth
resonance frequency. The response is inversely proportional to the

mode acoustic resistance at resonance. Since all the resonances in air

occur for ka > 10 , the modal acoustic resistance ran(wn) approaches

T T
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the characteristic impedance (pc)air = 0.168 x 10-3 . Thus, the

amplitude of the modal admiﬁtance, theoretically, is approximately the
level of 1/(pc)air . For a damped shell with a structural loss
factor of nE =6 X 10—4 for duralumin, the structural modal
resistance rmn(mn) at resonance has a very small value (see

Tables 3.6 and 3.7). Since rmn(wn) is smaller than the acoustic
modal resistance ran(wn) , the DPA is not significantly changed by
the inclusion of a small structural damping. Figure 3.1 shows the
modal mechanical and acoustic resistance of the duralumin spherical
shell in air at resonance. It is evident that the modal acoustic
resistance dominates over the mechanical resistance, because the latter
is due to the small structural damping. The minimum at ka = 25.303
in the curves is due to the fundamental membrane resonance n = 0 of
the upper branch. The modal admittance at that frequency is almost

30 dB below that of the lower branch resonance in the neighborhood.
This is not because of the total modal resistance LI but because

of the low mode number (n = 0). As seen from Curve (3) of Figure 3.1,
the response is considered flat within 3 dB. For the driving point
modal admittance, the mode factor (2n + 1) in Equation (3.12)
amplifies the differences between the upper and lower branch modal
response,

When in water, this situation changes completely. First, the
lower branch resonances remain within the lower frequency range for
high mode numbers up to n = 43 , as shown in Tables 3.8 and 3.9,
because the acoustic modal mass Man(wn) are comparably large. The

upper branch resonances are, of course, in the high frequency range

except for the first few resonances. Second, the acoustic modal

B S0 i i ool
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resistance ran(wn) is much smaller than the characteristic impedance

(pc)

vater 5.79 , and decreases with increasing mode number (see
Figure 2.4) while it is near the characteristic impedance at the
frequencies of the upper branch. This means that the modal admittance
increases as the mode number and natural frequency increase. However,
modes of the upper branch may not show up as sharply. The contribution
of the resonant modal term of the lower branch to the DPA is larger
than that of the upper branch. Finally, the internal damping will
cause the admittance to drop, but not significantly. Figure 3.2 shows
the resonant response of the modal structural resistance, acoustic
resistance, total resistance, and admittance in water. The modal
mechanical resistance T increases slightly with increasing
resonance frequency. The modal acoustic resistance Ton initially
decreases sharply with increasing resonance frequency, which corre-
sponds to the lower branch resonances, but eventually increases to pc
as the mode number and the natural frequency increases. All the upper
branch resonances have modal resistance of pc because the normalized
resonances of the upper branch (kna) are larger than n (see Figure
2.4). The resonant modal admittance is thus mechanically controlled
except for the first few lower branch resonances and all of the upper
branch resonances. The resonant modal resistance and admittance for a
shell vibrating in water are much higher than those in air except for
the first two modes as shown in Figure 3.1. Again, the factor (2n + 1)
accounts for the difference. For example, the first resonance in air
occurs at ka = 10.633 , for n = 2 , and the modal admittance is

13.1 dB, while for ka = 10.665 , corresponding to the n = 32 mode

when the shell is submerged in water, it has a modal admittance of
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38.8 dB. However, if one were to compute the modal admittance for
much higher mode order (and resonance), the modal resistance in water
would be much higher than that for air, and the modal admittance in
air would be much higher than that in water.

Theoretically, the largest contribution to the lower branch
resonance comes from the resonant modal term of the lower branch,
while the resonant modal term of the upper branch is dominated by the
adjoining resonant modal terms of the lower branch. Summation of all
modal terms gives a resultant DPA as in Equation (3.12), which should
include the resonant modal term. This also applies to the pressure
field in Equation (3.13), although the Hankel function converges well
when n > ka .

The magnitude of the DPA is shown as a function of ka in
Figures 3.3 through 3.10 for two shells which are submerged in both
air and water when both membrane and classical theories are considered.
In air, Figures 3.3 and 3.4 show that the DPA of shells, h = 0.0514"
and 0.1069", are not significantly different for a membrane shell
theory (whenever the membrane or classical theory is employed, they
are conveniently called membrane or classical shell, respectively).
The main feature of these two curves is that the resonances are so
clustered together (high resonant density), as shown in Figure 2.6,
that the curves exhibit no distinct resonant response except at
ka = 14.59 . This is the frequency limit of the lower branch of the
membrane theory. Thus, there is an infinite number of modes near this
frequency. This explains the large peak at that frequency, because
the energy in the shell 1s concentrated near that frequency. Since

all the resonances are close to this frequency, even for the first
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resonance, no distinct resonance response can be observed. The non-
normalized thin shell admittance is approximately 6 dB higher than
that for the thick shell because the mechanical impedance of the thin
shell is approximately half of that for the thick shell, see Equation
(2.26). However, the normalized thick shell response in Figure 3.4 is
6 dB higher than that for the thin shell response because the ratio of
the normalization factors used for the shells is approximately equal
to 4, which accounts for the 12 dB difference. The minimum response
at frequencies less than the first resonance corresponds to the first
anti-resonance between the rigid body frequency (Ql = 0) and the first
resonance (92). Thus, for frequencies below the first anti-resonance,
the motion at the center of gravity of the freely suspended shell is
governed by a term Yo = l/Z° = 1/iwM , where M is the total mass of
the shell. Therefore, the slope of the response is 6 dB per octave.
For classical shells, the resonances are well-spaced, and the resonant
response shows distinct peaks in Figures 3.5, 3.6A, and 3.6B.

When the shells are submerged in water, the DPA curve is quite
different from that in air. For a membrane shell, the resonance
increases slowly with the increasing mode number as shown in Figures
3.7 and 3.8, while the peaks at the resonances are distinct for
resonances up to ka = 3.3 . All the remaining resonances are located
close to this frequency, which means that the energy is concentrated
near this frequency. Thus, no distinct resonance response is observed
above this frequency. The upper branch modes have a low admittance,
so that they do not produce peak response at their resonances, which
occur mostly above ka = 3.3 . However, sirice the lowest mode (n = 2)

resonance is less than ka = 1 , the resonance peaks are distinct since
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they occur at frequencies far enough below ka = 3.3 . The resonant
response increases monotonically up to ka = 3.3 due to the factor
(2n + 1) in the expression for the admittance. The curves for
classical shells are shown in Figures 3.9 and 3.10.

Generally, the height of the DPA response in air is higher than
that in water below the first resonance. This is explained by the
fact that the virtual mass of the displaced acoustic medium at low
frequencies is negligible in air when compared to the mass of the shell
but is much higher than the mass of the shell vibrating in water.
Thus, since the admittance below the first resonance is 1/uM , M
being the total mass being vibrated, the admittance in air is much
higher than that in water. However, the admittance of the shell at
resonances is lower in air than in water because of the previously
explained behavior of the modal admittances in air and in water.

The minimum point in Figures 3.3 through 3.10 corresponds to
anti-resonance between the rigid body motion frequency (Qlﬁ=0) and
the first resonance. It will shift due to the position of the first
resonance. The position of the first resonance of the shell in air
is the same for all shell thickness, so that the anti-resonance does
not shift. However, the first resonance of the shells submerged in
water is almost one-tenth of that in air, so that the location of the
anti-resonance shifts down accordingly.

In vacuo or air, the mean value of the DPA for a shell will
approach the value of the characteristic impedance of an infinite
plate. The result is shown in Figure 3.6B. The line MN in the
resonant spectrum is the predicted mean value computed by Equation

(2.58). The resonant mean value is in excellent agreement with the
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line MN , but the predicted mean value in the first few modes of the
membrane range fails to agree. This is because there are so few
resonances in the membrane range,

The mean value method can also be used to predict the mean
value of the DPA of a shell in water. However, it has to overcome
the difficulty due to the introduction of the virtual mass in the
equation of motion. At very high frequency, the mean value of the
DPA of a submerged shell again approaches the unloaded plate value.

As previously discussed, the fluid loading is so important
that it affects the frequency spectrum. The role it plays in the
directivity pattern is to change the amplitude of the pattern but not
the shape. Figures 3.11 and 3.12 are the directivity plots of the an
mode at their resonances, ka = 1.0307 in water and ka = 10.659 in
air, of a shell with thickness h = 0.1069". All the peaks shown in
Figures 3.3 through 3.10 represent resonances of the lower branch.
Figures 3.13 and 3.14 show the modal shapes for the resonance of the

4th

mode of the upper branch, and at ka = 14.886 for the resonance
of the 29th mode of the lower branch for a shell with thickness
h = 0.1069"in water. Close examination of these two mode shapes show
that the 29th mode of the lower branch predominates the shell vibration
response at ka = 15.745 which should have exhibited a 4th ordered
mode. .

The pressure field in water is higher than that in air since
the acoustic resistance in air is much larger than that in water. The
symmetrical resonant shape, and the mode number of a directivity

pattern are information to be used to properly identify a resonance

experimentally.
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3.3 A Spherical Thin Shell Insonified by an Acoustic Spherical

Wave in a Fluid Medium

In order to have a better understanding of the elastic scatter-
ing response of an elastic spherical shell as being insonified by a
spherical acoustic source, a discussion of the rigid and the radiated
scattering of a scattered field is given first. For an elastic
structure, the observed pressure field is not only the sum of the
incident pressure pi(r,B) and the blocked (rigid) scattered
pressure ph(r,e) as scattered by the boundary of the structure, but
must also include the radiated scattered pressure due to the response
of the vibration of the structure generated by the incident wave. The

resultant pressure is, therefore,
p == pi + ps N (3-14)

where the scattered pressure is:

Pg T Py + pr
The geometrical configuration of the system is shown in
Figure 1.1. The source is located at a point S on the positive
z-axis, at a distance T, from the shell's center. The observer
point is located at a distance r from the center and 6 degree off
the z-axis. The system is assumed to be axisymmetric. Expanding the
ikd

spherical acoustic source p; = e /(4nd) 1in terms of Legendre

function Pn(n) in the spherical coordinates [20], one has:

U




BT Tatvat, ™

Ry s . T s e U, g 8

e1%d, c4ma)

o
[
L}

(ik/2ﬂ)ho(kd)

jn(kro)hn(kr) r>r

(ik/4m) ¥ (Zn+1)2_(n) R
n=o

b aom Gy r<x

(3.15)
where k = w/c , jn and hn are, respectively, spherical Bessel and
Hankel functions of the first kind and of order n .
First, the scattering by a rigid sphere will be evaluated. The
rigid scattered pressure ph is the pressure field from the surface of
the shell considered as a rigid sphere. It can be written in the

following form:

o«

P, = §=o D h (kr)P_(n) , (3.16)

where Dn is an undetermined coefficient. Therefore, the resultant
pressure p_. due to the boundary reflection and the incident pressure
Py is:

pih = pi + Ph . i (3-17)

On the surface of the shell r = a , the resultant particle

velocity must vanish at the radial direction

wih = 0 . (3.18)

The continuity condition on the spherical surface requires that
the radial component of the shell velocity equals the particle velocity

at the boundary as follows:

T AR Bl ol S




- —d

Bwih

o —dh | _ %P1h
at or

Applying the boundary condition, one has:

api Sph

-5r—+—5r— 0 ’ at r = a .

Substituting Py and PL from Equations (3.15) and (3.16), the

undetermined coefficient Dn is obtained as:

i'(ka)

= - _n____
Dn = (ik/4m)(2n + 1) h;(ka) hn(kro) ’

where j; and h; are the spatial derivative of jn and hn along

the radial direction, respectively. Substituting Dn into Equation

(3.16), this gives the scattered pressure field from a rigid sphere:

ik © h, (kr)
P, = - ur §=o (2n + 1)Pn(n)jn(ka)hn(kr) EE?E;; . (3.20)

For the scattered pressure from an elastic spherical shell, the
radiated scattered pressure of the shell P, can also be expressed as

harmonic outgoing waves in the form of Equation (3.16):

o]
P, = ) B h_(kr)P (n) , (3.21)
n=o
where Bn is the expansion coefficient to be determined. The radiated

pressure must satisfy Euler's equation on the surface (r = a) as: ]

i Py (3.22)

The response velocity W on the surface of a submerged shell is equal

to the ratio of the resultant pressure on the surface to the mechanical
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impedance. The ratio, given in the form of Equation (3.5), is:

+
ﬁ = - pin phn + prn
n Z ’
mn
4
{ - .
where the Pin ° phn , and prn are the modal terms of the pi .
Py > and P> respectively. And Py = Zanwn is obtained from

Equation (3.6). Thus,

p;_ +p
" in hn
Wn = -7 T3z . (3.23)
an mn

Substituting Equation (3.23) into Equation (3.22), one has:

op pP,. + P
rm _ in hn
N ipw Zn . (3.24)

Finally, substituting Equations (3.14), (3.20), and (3.21) into

Equation (3.23), one obtains the coefficient as:

; Bn = i p; (2n + 1) LU 3 .

N ]

4Tak (Zan + zmn)[hn(ka)]

é From Equation (3.17), the radiated pressure field becomes:

I

§ . o h (kro)hn(kr)

: p, = 1—E-] (n+DP_(n) — . (3.25)
’ 41a"k n=o Z [h'(ka)]

§ n n

g

Substituting Equations (3.20) and (3.25) for Py and P into

Equation (3.14), the total scattered pressure is expressed as:

oy

Bt Bhos e wbn s fnnii el
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ped h_(kr )h_(kr)

ik L(kr )
s < aT L (20 + 1)P_(n) R (ka)

x 135 (ka) - o

n (ka)zh;(ka)zn}
ik ©

- - IZFO (2n + 1)P_(Mh_(kr )h_(kr)
z
ka) - 1 =2 §'(k

o a R : (3.26)

h (ka) - 1 —5-“;“— h! (ka)

From Equations (3.14), (3.15), and (3.26), the total pressure p of

an elastic thin spherical shell driven by a spherical acoustic source

is:
bt h_(kr) j. (kr )
p = %Z (2a + 1P (M) " oo
n=o b (kr )| |3 (ke)
: h (kr ) Zmn
n o jn(ka) -1 Ti?'j;(ka) r z_ro
- 7 . (3.27)
hn(kr) hn(ka) -1 Tﬁ? h;(ka) r < r,

The result as given by Equation (3.27) can also be derived [8]
by using the technique of Hamilton's variation principle. However,
the result nbtained by this technique does not give specific physical
interpretation about the rigid scattering pressure, the radiated
scattered pressure, or the relation between them. In contrast, the
derivation previously given in this section can give a definitive

physical insight of the contributions to the scattered pressure. For
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a submerged, elastic spherical shell, the scattered pressure is the
sum of the rigid and the radiated scattering as shown in Equation
(3.26). The radiated scattering is a result of the characteristic
of an elastic structure. It may be called "elastic scattering."

The characteristic of the elastic scattering is that the
radiated scattered pressure P, changes rapidly with resonant
frequency. Since the IM(Zan + zmn) varies rapidly near resonance
in Equation (3.25) and vanishes at resonance while the factor of
(Zan + Zmn)-l changes slowly, the radiated pressure P, is dominated
by Zn and fluctuates rapidly with frequency. The rapid fluctuation
in the pressure is the result of the structural resonances as the
reactance an(wn) of the mechanical impedance is well-coupled to
the ractance Man(wn) of the acoustic impedance. The radiated
pressure spectrum is similar to that of the DPA. Both the radiated
pressure and DPA spectra are controlled by the total impedance Zn .
More precisely, these represent the response of the motion of the
shell's surface to the incident pressure. However, the radiated
pressure in Equation (3.25) is not only controlled by Zn , but also
by the characteristic impedance pc . The frequency spectra of the
pressure field of an elastic shell excited by an acoustic point-source
were computed for two different shell thicknesses whether submerged
in air and water, and the pressure evaluated at 8 = 0° and 180° .

In the illuminated zone, the total presggre is composed of the
direct field, the reflected field, the diffracted field due to creeping
waves around the shell, and the radiated field due to the vibration of

the shell. The reflected and diffracted fields combine to generate
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the blocked (rigid surface) scattering Py - Thus, the first four
fields are present in the scattering from a rigid sphere. The
creeping waves of the diffracted field, which exists for ka > 1 ,
are usually weak and thus are not noticable in the illuminated zone.
However, since the creeping waves are the only waves existing in the
shadow zone for a rigid sphere, they interfere destructively and
constructively as a function of the acoustic wave number ka . 1If
the radiated field, which is proportional to the characteristic
impedance pc of the medium, is high, then it predominates in the
illuminated zone and the shadow zone, especially near resonance
frequencies.

In air, the scattered pressure from an elastic shell in the
illuminated zone (8 = 0°) is shown in Figures 3.15, 3.16, and 3.17.
It can be seen that the rigid sphere is dominated by the direct and
reflected waves; hence, no fluctuation in the frequency spectra are
noticeable as was reasoned above. Since the characteristic impedance
of air is low, the radiated pressure, even near resonances, is too low
when compared to the scattered pressure from a rigid sphere. Hence,
the total scattered pressure of a spherical shell in air resembles
that of a rigid sphere in the illuminated zone.

In the shadow zone of a spherical shell in air, the scattered
pressure in the low frequency range is that of long wavelength
Rayleigh forward scattering (ka << 1) which increases with frequency
as can be easily seen in Figures 3.18, 3.19, and 3.20. 1In the high
frequency range, the creeping waves are the only contributor to the
field in the shadow zone of a rigid sphere. The constructive and

destructive interference can be seen for a rigid sphere for ka > 1 .




PRESSURE <DB)

"'27.
1

93
J

7%,
1

—— Total field
+ + Rigid field

L ALM

23,

"7.
L

Radiated

- 47.
1

-870

g7.

T T TV T T o 1 rrrrm
0. m 010 1. 0o 10. DO 100. 00
DIMENS IONLESS FREGQUENCY (KAJ

Figure 3.15 Frequency response of a membrane shell
with thickness h = 0.1069" in air for
r, = 8.25" , r =8.5", and 6 =0°

e gy s e e p——— e S -
d v, o 2

101




102

Total pressure

w | + + Rigid pressure

H
Lol Tt
»

Radiated

PRESSURE <DB)

T T T T T T rrmy 1 rrrrm
o o1 010 1. 00 10. 00 100. 90
DIMENS IONLESS FREGUENCY (KA)

Figure 3.16 Frequency response of a classical shell
with thickness h = 0.0514" in air for
r = 8.25" , r=28.5", and 6 =0°




PRESSURE <DB)

"27-

Total pressure

o + + Rigid pressure

.AU‘M

-7. 13 33,
] 1

1

Radiated

- ‘7. - *7!
| L

~37.

=107,

0 o 0. 10 1. 00 10. 00 100. 00

DIMENSIONLESS FREQUENCY (KA)

Figure 3.17 Frequency response of a classical shell
with thickness h = 0.1069" in air for
r =8.25", r=28.5",and 6 =0°
o l
1

.

B A A - i g Basie v




« Rigid
pressure

L 4 & & CPeiid
Radiated -

PRESSURE <DB)
-7l
L

-27.

- ‘7. "‘7-
L 1 1

- 87-
1

LA ) B S 3 NS B B 2 )L BN B RN B R AL
o o 0. 10 1. 00 10. 0O 100. o0
DIMENS IONLESS FREQUENCY (KA)

=107.

Figure 3.18 Frequency response of a classical shell
with thickness h = 0.0514" in water for
r = 8.25" , r=28.5", and 06 = 0°




PRESSURE <DBJ

"'27-

HY Total pressure > Rigid pressure

<+ LR R X1 - VoY <+
Radiated *

- ‘7- - 47. "'7.
1 1 1 1

—;71

"‘“r’-

T 7 T T T v v 1 i
2. 01 0. 10 1. 00 10. 00 100. 0O
DIMENS IONLESS FREGUENCY (KA)

Figure 3.19 Frequency response of a classical shell
with thickness h = 0.1069" in water for
r, = 8.25" , r =28.5", and 6 = 0°

i e —————

T,
.:;%.,l. »} Sy i .
Y O TP |
S R Yot TR N
3 ek PR &
N ) e 1 A“‘,q Ty gy s
' Sl ! y P ) e

Yy ; A
PIOLR. B boadt v - deaw Win o p 47 adsd



" e e £k

PRESSURE <DBJ

45.
i

Total pressure

32 { ]
1

. « » Rigid pressure

14,

-20,

-35-

Radiated
i

-4 6-

-5%q,

_72l

-35.

T T V7 o rrrrmr v
0. 01 0. 10 1. 00 10. 00 100. 00
DIMENS JONLESS FREQUENCY (KA)

Figure 3.20 Frequency response of a membrane shell with
thickness h = 0.1069" in air for r, = 8.25"
r=8.5", and 6 = 180°

e e E T
: k¥

R P AP A .
s o ok b SRR




B s o

ra T L e

However, the radiated field, while weak because of the characteristic

impedance of air, is comparable and sometimes dominant over the weak

creeping waves. This is clearly seen in Figures 3.8 through 3.20,

where the resonant radiated field is dominant over the creeping waves
for ka > 10 , where all the resonances of the shell vibrating in air
occur.

In water, the scattered pressure from an elastic shell in the
illuminated zone (6 = 0°) 1is shown in Figures 3.21 and 3.22. Here,
the low frequency scattering below the first resonance of the shell
is still dominated by rigid scattering. However, since the character-
istic impedance of water is so much higher than air (+72 dB), the
radiated pressure becomes dominant, even in the illuminated zones at
the resonances of the submerged shell. This is more so when one
examines the scattered pressure spectrum in the shadow zone (8 = 180°)
in Figures 3.23 and 3.24. The radiated pressure is higher than
scattering by a rigid sphere by 30 dB in the low frequency, by 85 dB
at resonance in the mid frequency range, and by 60 dB in the high
frequency range.

In conclusion, the backscattered field (i.e., the illuminated
zone) of a spherical shell in air can be represented by a rigid sphere.
However, this is not true in water, where the resonant backscatter can
be 60 - 85 dB higher than a rigid sphere for ka > 1 , Thus, it
can be stated emphatically that submerged elastic structures insonified
in water can generate a much higher backscattered echo than a
correspondingly sized rigid object. Furthermore, the elastic resonant

scattering is even more pronounced in the shadow zone for structures

insonified in air or in water. This means that structure-borne sound
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is predominant over rigid scattering in the shadow zone. This also
means that measurement of the scattered pressure from an elastic
structure in air cannot be used to predict the scattered pressure in
water.

Figures 3.25 and 3.26 show the fluid loading effects on the
directivity of the nearfield pressure. They both represent the
resonant directivity patterns (n = 2) of the shell submerged in
air and water, respectively. In air, due to the dominance of the
blocked pressure over the radiated component, the pattern does not
exhibit the n = 2 mode form. Instead, the pattern has fluctuations
corresponding to the constructive and destructive interference of the
creeping wave around a rigid sphere. In contrast, the directivity of
shells in water gives the expected modal pattern n = 2 because the
radiated pressure dominates the blocked component and has the expected
number of nodes.

By examining the directivity pattern of the shells for extremely
low, mid~range, and extremely high frequency, more information about
the response of the elastic shells is obtained. For the case of a
spherical source located at r = 8.25" and a field point located at
r = 8,5" (both distances from the surface are less than one wave-
length), the pattern of the submerged shell at extremely low frequency
ka = 0.2 , which is below the first resonance, is shown in Figure 3.27,
behaves like that of a rigid sphere in the illuminated zone. This is
because the rigid component is much stronger than the radiated field
at low frequencies below the first resonance. As the field point
moves away from the source around the sphere, constructive and de-

structive interference occurs. The pattern in water is approximately
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the same as that in air, although the former decreases in the
illuminated zone and increases in the deep shadow zone. Near the

ring frequency, e.g., for ka = 14 , the observed field in water (see

Figure 3.28) exhibits the n = 29 radiated resonant pressure pattern,

while the observer field in air again exhibits a rigid diffraction

pattern. J
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CHAPTER 1V

THE GEOMETRICAL THEORY OF DIFFRACTION (GTD)

4,1 Introduction

In this chapter, a different approach is taken to solve the
scattering problem of a submerged spherical shell at high frequencies.
The procedure used is to compute the acoustic field for a sphere with
an impedance boundary predicted by the GID method and compare the
levels with those determined from an exact solution.

In the previous chapter, the pressure field of a submerged
spherical shell, insonified by a spherical wave, is expressed in the
form of a wave harmonic series. If the wavelength is small when
compared with the dimension of the shell (large ka), the sum of the
modal terms are, therefore, poorly convergent. One may need as many
as 2ka terms to attain reasonable accuracy. Because of the slow
convergence, the wave-harmonic method is not practical at high fre-
quencies. Therefore, asymptotic high-frequency approximations must
be employed. One of these high-frequency approximate methods is the
Geometrical Theory of Diffraction (GTID).

In the 1950's, Keller made a significant extension of the
geometrical optics by including diffracted rays to describe the
diffraction when the scatterer has edges, corners, or vertices, or
when it has a smoothly curved surface. He has studied the spherical
problem [13] by employing the GTD method. In this paper, the rays
penetrate into the shadow zone and account for the non-zero field

there, and also modify the illuminated field. The diffracted field

N

e



119

is obtained by multiplying the incident field at the diffracted point
by a diffraction coefficient., This coefficient is derived from the
exact solution. The GID solution for a sphere is not adequate to
predict the field at caustics. In order to have a valid solution near a
caustic, the correct field is obtained by multiplying the GTD solution
by correction factors [13].

Another high-frequency approximate technique is applied to
evaluate the scattering field generated by those canonical shapes for
which an exact solution is available. This technique was developed by
Watson [21] about 60 years ago to solve the problem of radio wave
diffracted into the shadow zone of the earth. He solved this problem
by converting the slow convergent wave harmonic series into a complex
integral. And solving the complex integral by residue method has led
to a fast convergent series,

For large ka , both Keller's and Watson's method are adequate
to solve the scattering field of a submerged spherical shell insonified
by a spherical wave. For examining the problem of both the source and
field point located near the surface, the Watson transformation will

give a straight mathematical solutiom.

4.2 The Watson Transformation

Consider the forward scattering of a submerged elastic shell in

Chapter III; the pressure field has the form:

[ 2]

f(n,n) = § (2n+ Df(mye (n) ) (4.1)
n=o

where




Q3 (ka)

f(n) = %% h_(kr) {jn(kro) - ﬁFE?EZT hn(kro)} » T >r
n
(4.2)
9 = 3 (ka) - 1Z j’(ka) ,
@h = h (ka) - 1Z_ h!(ka)
z, = Zmn/pc .

where the function f(n) 1is assumed to be regular, and Za is a
function of n and ka .

When converting the wave harmonic series into a contour integral,
the integral of Pn(cose) does not converge at 8 = 7 for non-
integer n because the integral has a line of logarithmic singular-

ities along the line 6 =7 {[22]. Thus, one can choose the spherical

harmonic function Pn (-cosf) , by using the relation:
P_(-cos8) = (-1)"P_(cos®) , (4.3)

which holds for integer n .
Taking a contour C enclosing the poles on the positive real
axis in a complex s-plane (Figure 4.1), Equation (4.1) is transformed

into such a complex contour integral:

»
sf(s - E)Ps— %(-cose)

c Py ds = - 2mi} R s (4.4)

where (-1)" is proportional to cos(sT) , s =n + % .

n=20,1, 2, .... The negative signs on the right-hand side of

Equation (4.4) indicates the contour is clockwise.
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The residue Rn is expressed as:

sf(s - PP EN)
s— —

Rn = d 2
s (cos sT) s=s
n
3 1 )
» = snf(sn - E)Psn_llz('J)
= 30+ DE@ED2 M) / [- WD
- % (20 + DE@E (M) / (- ™ ; (4.5)

From Equations (4.4) and (4.5), one obtains the harmonic series

in terms of the complex integral: 1
sf(s - -Z-)P 1M

1 "2
(2n + DYfEM)p. (n) = <+ ds .
n i
c cos(sT)
k 1
(4.6)
The next step of the Watson transformation is to deform the contour C1
into C2 which avoids the poles on the real axis, but includes the
poles of th(ka) [Equation (4.1)]. Replacing s by =-s in
Equation (4.6), and by using the properties:
Ps_l(cose) = P_s_l(cose) ,
_ -isT
g hs—l(x) = e h-s-l(x) ’
: . ~
L Y BT el AU ¢ B R H
f(-s) = = f(s) s (4.7)

and the integrand is an odd function. The lower half of contour C1

is, therefore, deformed into an equivalent path shown as the broken line

e e e i+t e ereata ——— i e - _-__J




in Figure 4.1. Thus, the contour C1 may be replaced by a straight

line C2 . The poles of the function f(s - 1) are enclosed by the

new contour of the integral formed by the path C2 and the semi-
circle C, as shown in Figure 4.2 (a detailed discussion of the
choice C, 1is given in Nussensveig's paper [23]). The contribution

to be integral from C,_, 1is zero since the integrand is an odd func-

2
tion, and the integral vanishes along the path C_ as the radius of

the semicircle approaches infinity (see Watson and Nussenzveig). The

s only contribution comes from the poles enclosed by C2 and C_ .
‘ The poles are the zeros of the denominator th(ka) , which may

[ be expanded in a Taylor series about the zeros sn:

9
{th_(ka) = §h_(ka) + (s - s) 3o (O (k)] _ o + ...
S=Sn n
(4.8)
It is obvious that at s = sn :
th (ka) = 0
n

5’ or
: hg (ka) / h; (ka) = 1iZ , (4.9)
‘ n n

where Za is assumed to be a function of ka only. This approxima-~

R

tion of Za is to be used in this study henceforth. The residue is

Tty

the coefficient b of the term (s -~ Sn)

n

. 1
i b, = -2 [Qh_(ka) (4.10)
{ 1 9s s _
: . s=s
?' I' because th(ka) has simple poles only. Equation (4.9) is the
? boundary condition of the sphere. For a rigid sphere, Za approaches
é‘ an infinite value. It implies that hé (ka) = 0 . On the other hand,
1 n
z the sphere is called "soft" when z, or hg (ka) vanishes.
.

-
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By applying the residue theorem, the contour integral in

Equation (4.6) may be expressed in terms of a residue series:

(2s + 1)£(s)P _(-n) G(s )
- 5% § rreycr e U 7 l5%,
C 1
where
G (s) = X (kr) {j (kr )%h_ (ka) - 9 (ka)h  (kr )]
n 4m s s o' s s s o f
n n n n n

(an + 1(Psn(-n)
sin(ﬁsn)

The pressure field of the sphere is expressed as:

‘k(‘O
i 3
Tl

n=o

p =

(25n + 1)PS (-n)hsn(kr)[js (kro)Qhs (ka)—Qjs (ka)hs (kro)]

x n n n n n

sin(s m = [0h_(ka)]___

n
(4.12)
By using the result in Equation (4.9) and
. _ 1, (D) 2)
i 0 o P77 +h ()] ,
one may reduce
j (ke )Oh_ (ka) - 9§ h_ (kr) = ~+n (ke )on’?) (ka)
s o''s ls P o 2 s o s
n n nn n n
(4.13)

Substituting the result in Equation (4.13) into Equation (4.12), one

obtains:




@
(25 + 1P, (-1 thn) (ka)
hs (kr)hs (kro)

sin(ﬂsn) n n g% [th(ka)]sgs

n
(4.14)

th(z)(ka)
n
3
a—s‘ [th (ka) ]S=Sn

is proportional to the diffracted coefficient expressed in the GTD
method [13].

At high frequencies, and ka z s, > this term and Equation (4.9)
can be expressed in terms of Airy function approximately (see Appendix
B). The numerical computation is evaluated on the computer by
applying the method derived by Bremmer [22]. The numerical evaluation
will be discussed in the following section.

The pressure field expressed in Equation (4.14) is only valid
in the shadow zone of the sphere because the choice of the spherical
harmonic function [21, 22, 23, 24]. According to the geometrical
optics, the shadow zone of a sphere is a zone in which there is no
direct ray. Therefore, the zone is determined by the distance of the
source from the surface and the location of the field point. Mathe-
matically, the shadow zone, in terms of the observer angle 6 , is:

m< 9 < cos_l(%—) +cosTt () ) (4.15)

o
When the source and the field point are located near the surface of

the sphere, the order of the Hankel function becomes comparable to

the argument. For this case, the Hankel approximation of the Hankel




function will be employed [see Equation (B.4) in Appendix B].

the Hankel function in Equation (4.14) is expressed as:

m

-1 —
2 3 ,6.1/3 (1)
h (kr) v o= e G Alg "]
n
and . -
2 3,6 .1/3 ,, (2)
h (kro) Ve © G Alq "] R (4.16)
n o o
for s, z kr or kro , and large s, o where A[qél)] and A[qiz)]
are the Airy function, and
n
-1 =
and o
—1 -
qr(lz) = [(ka - kro) (6)1/3e 3 + qn(ka)1/3](kro)—1/3 ,
(4.17)

/3_e—iﬂ/3

where q_ = (6/ka)1 (sn - ka) . As kr (or kro) > |sn| ,

the Debye approximation [25] of the Hankel function is appropriate.
The expansion is valid as the source and/or the field point is not

located near the surface. The Debye approximation is expressed as:

2,1/2

ik(rz—a ) —isncos—](a/r)

hs (kr) v (kr)-l/zk—l/z(az _ r2)—1/1.63
n

(4.18)

The spherical harmonic function Ps (-cos®) 1is equal to unity
n
at the antipode. At the other observer angle in the shadow zone, it

is expressed as [22, 23]}:
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v 2 s
Ps (-cosb) = 7 sin(m = B) cos[sn(n - 9) - 4]
n n
1s_(T-0)-1i7 -is_(m-0)+iT
nooe n + e o 4
= . (4.19)
V2T ka sin®
The term sin(ﬂsn) can be expressed as:
iy m 2iu m
n n
- _ -e (1 +e )
sin(ﬂsn) = - cos(ﬂun) = 2 s (4.20)

1 -
where un = s + 2 then un = sn for large ka .
Making use of the above relationships, the pressure field in

Equation (4.14) gives:

(1) At the antipode, 8 =7
(A) As (r - a) and (r0 - a) > A (wavelength)

ierz-a2 + ierg - a2 o iunn
e

a

“ ’
ZVrro /(r2 - az)(ri - az) N0 1 + e

p = -

(2)
—iuncos-l(%)—iuncos_l(%-) QHUn (ka)
X e o
3 [ (1)
Sﬁig“u (ka)] .
U‘Un
(4.21)
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(B) As 0 < (r -~ a) and (ro -a) <A
2T
2/3ﬂ-1k1/3ae-17r

_ i(6)
/6

5
(rro)

(2)
on “ (ka)
ul’l

@)
[on (ka)]u=un

1 2
x ala{V1a1a{?1
EN
(4.22)
(2) At an arbitrary observer angle in the shadow zone

(A) As (r - a) and (ro - a) > A

2 2 2 2
ik /; -a + /; -a ]
22 0 :

p = -

y
JBTkET_sing /(rz—az)(rz—az)

T . T
. in (2m-6)-iy ip B+i
e + e
x Z _
n=o lzunTT
l1+e
-1(& - (2)
-iu [cos l(1:)+cos l(—z-l—-)] QHU (ka)
n r n
X e o

9 o)
au Ly, (k) ]y

(4.23)

n




(B) As 0 < (r - a) and (ro - a) <A
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P — = 173
v rrosin (rro)
o iun(z"rr-e)-i% iun9+i%
x Z e + e
_ i2u w
n=o 1+e O
QH(Z)(ka)
X A[qr(ll)]A[qéz)] z s
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U=Un
(4.24)
where
on(?) (ka) oh 2 (xa)
un A Sn
N
é%[ﬂﬂﬁl)(ka)]u=un g%[ﬂhél)(ka)]s=sn
150
q
VI EBE a2q) + F a@))

as s Yy Mo for large ka [see Equation (B.13)
in Appendix B].
According to the GTD:

iun = (ik - an)a ’ (4.25)

where an is a decay factor for acoustic propagation which depends on
the local properties of the surface of the spher2. The term

eXP{iunle - COS—l(a/r) - cos_l(a/ro)]} in Equation (4.23) or
exp{iun[n - cos_l(a/r) - cos-l(a/ro)]} in Equation (4.21) is the
combination of the phase change and the attenuation of the surface

diffracted ray between the incident point on the surface and the
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launch point. When both the source and the field point are located

on the surface, the ray path on the surface increases such that the

terms cos-l(a/r) and cos_l(a/ro) vanish as r=r = a . The term

iy m o

(lL+e n ) represents the sum of the rays traveling along the

surface n times, where n approaches infinity. Finally,

Qﬂﬁz) (ka) / (B/BU)[Qﬁél)(ka)]u=u is proportional to the diffraction
n n
coefficient.

For the case of the near field, the computation of the pressure
field in Equations (4.22) and (4.24) takes a relatively longer
computation time. Therefore, the tangent approximation of the Hankel
function is used. For practical purposes, the tangent approximation
is good enough for the accuracy.

The tangent approximation is expressed as:

3/2}

h,(2) % cos (§ +-§ (21) . (4.26)

25/6 4‘/‘2T

1/2T . For both the source and the field point located

where U =2z + z
at a distance less than a wavelength from the surface of the shell, the

T 1in Equation (4.26) is a value corresponding to the arguments kr ,

kro , and ka . It is expressed as:

U = kr + (kr)1/31‘1
or

wo= ke o+ G )Y, (4.27)
Also,

b= ka+ k)3t . (4.28)




Combining Equations (4.27) and (4.28), T, and T, can be expressed

1 2
approximately as:
Tl = - (Xl - 2T) /) 2
and
T2 = - (X2 -2T) [ 2, (4.29)
- 2/3 _
where Xl (ka) (2h1/a), h1 =r a

(ka)zl

3
and X (2h2/a), h2 =r =~a.

o
Substituting Equation (4.29) into Equation (4.26), the tangent
approximation of the Hankel function for the arguments kr and kro

can be rewritten as:

2cos[%~+ %‘(X1 - 2T)3/2]
b (kr) v /2. 1/3 174
(kr) (ka) (X1 - 27)
and
2cos[%+%~(x2 - 2T)3/2]
h (kr ) ~ . (4.30)
we e )2 ka3 x, - 20y

Following the procedure for deriving the near field and by applying
the tangent approximation, Equation (4.30), the nearfield pressure is

obtained from Equation (4.14) as:

. © iy
n iTT(ka)2/3e5111/6 y e ? coselcose2
1/3 1/7 172 n=o Zrin 174
6~ ' “a(kr) (kro) L+e n (Kle)
' 2 2 -1
x {3[A (a )1 + q A (qn)} , (4.31)

o )

P

oo oty i
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where
| o = T3
} % = %’“%Kz?’/z ’
| K, = X -2t ,
K2 = X2 - 2T s
t - q ei’g , 61/3
and
W, = ka + (ka)l/3 L .

4.3 The Method of Computation and Numerical Analysis

4.3.1 The Method of Computation. 1In order to evaluate

numerically the pressure field in Section 4.2, the roots of the Airy
function A(qn) have to be computed. The method used in this
calculation was developed by Bremmer [22].

The boundary condition for the elastic sphere in Equation (4.9)

is:

Hél)' (ka)

- - iz . (4.32)
Hél) (ka)
n

As shown in Appendix B, this relation can be simplified by applying

the Hankel approximation for (s - ka)/ka < 1 , and Equation (4.32)

becomes:
A'(q) 1507
9a’ o 6 (kay1/3 , -1 (4.33)
A(qn) = 6 a k) -

L.ua‘xa.‘m&‘ ,
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where the Airy function is defined as:
3
A(qn) = cos(t™ -~ qt)dt s
o {
and A'(qn) is the derivative of A(qn) . By making use of the
tangent approximation of the Hankel function:
i
5/4 7%
27" e T, 1 3/2
H (ka) ~ cos[+ + =(-21 ) ]
s_ “1/2(1(‘3)1/4(Sn RO z 7 3y
(4.34)
and
a1 (ka) s
% 2914, h (<20 )12 ey /3
3(ka) ﬂl/z(ka)(sn TR
Tl 3/2
X sin[4 + 3( ZTn) ] , (4.35)
Equation (4.32) becomes:
Tl . \3/2, _ . =1, ,1/3 -1/2
tanly + 3 (-21)7°°1 = 2z TT(ka)~'7(21) . (4.36) 7

This equation may be solved more easily than Equation (4.33) for the
zeros Tn , although it is less accurate than Equation (4.33).

However, for s_>> 1 , the A(qn) and A'(qn) can be expressed

1
as [24]:
- ‘
Ay ¥ = costz DT
(3q,) 7
M) N - e st eyY? 4 I
or
A'(q )
R (3“)1/2 [z(“i"2 +I . (4.37)
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This equation does not provide an easy way to obtain the roots qn

for an arbitrary value Za , but it does show that the tangent
approximation approaches the Hankel approximation as Za + ® or

3 Za + 0 . These two limiting cases will help evaluate L for

F arbitrary values Za .

For Za approaching infinity, the zeros T (sn or qn) is

obtained from Equation (4.36):

Pk
- 1 1,,2/3 73
Tn,w = 3 {(3r(n + A)] e
or
1/3
(6) 1,,2/3 .
ﬁ qn,°° 2 [3r(n + 4)] , n=0,1,2, ... (4.38)
while for Za approaching zero:
E m
= 1 3,,2/3°3
] Tn,o = 2[3'"(1'1 + 4)] e
r or
1/3
_ (e 3,,2/3
qn,o 2 [3r(n + 4)] (4.39)

Bremmer [22] has developed a zecliiod to compute Tn for

arbitrary values of Za [z = - iZa(ka)_l] by expanding T in terms
of T and Z or T and Z . The two series are:
n,® n
T = T -7~
n n,o

for small Z , and

for large 2 .




On calculating qn , the first few values of Tn -
?

and T
n

are those obtained from the Hankel approximation; then, for s, >1,
the values of the tangent approximations in Equations (4.38) and (4.39
are used since both approximations are of the same order [see Equation
(4.39)]. There is a criterion for determining when Equation (4.40)

or Equation (4.41) will be employed for a given value of Z . If

ZZTn > 0.5 , Equation (4.41) for large Z will be used. Otherwise,

Equation (4.40) will be applied.

4.3.2 Numerical Analysis. For this investigation, a spherical

shell with an impedance boundary is being considered. Six different
models for the elastic shell impedance have been used. They are

listed as follows:

(1) Uniform Impedance

2

psCP/pc i
where

)~1]l/2 .

-1 2
-V

c [Eps (1

p

(2) Driving Point Impedance of an Infinite Plate

8a? U / (2ma’oc) ,

N
(]

h’E / 12Q1 - VDo,

2
[}

(3) Wave Impedance of an Infinite Plate Excited by Normal

Incident Plane Wave [26]

Zy = (pgC,l0c) [ (e/C (h/a)(ka) .
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(4) Bending Impedance of the Plate
24 = Dst/pC ’

where Vb = awl/Z » bending velocity.

(5) Driving Point Impedance of a Spherical Shell Excited

by a Uniform Force

1
ZS=TF—’

pe Z EJL
n=o mn

n + 1 7l/2,-2
1 31 ,

2 1 1
4Ta I‘(1+—2—-7n)1‘(5+5+5n)

I'(n) is a Gamma function.

(6) Driving Point Impedance of a Spherical Shell Excited

by a Point Force [see Equation (3.12)]

The procedure of the computation is to calculate the Tn for

arbitrary values Z from Equations (4.40) or (4.41), then to calculate

A(qn) and A'(qn) , and finally, to compute the pressure field from
Equation (4.31). The frequency spectra of the pressure field for

spherical shells with the above six different impedances are shown in
Figures 4.3, 4.4, and 4.5. The number marked on each curve indicates
the frequency spectra of the shell with the marked number impedance a

listed above.

S
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The uniform impedance Z1 has a value of 55.6194, while the
driving point impedance of an infinite plate is 0.0292, They are
shown as Curves (1) and (2) in Figure 4.3.

Comparing Figures 4.3 and 4.4 with Figure 4.5, the frequency
spectrum of the exact solution, the only GTD pressure field that is
close to the exact solution is the pressure field of a shell with a

uniform forced driving point impedance 2 [see Curve (1) in Figure

1
4.3). According to Sachs's study [27], the GTD method gives a very
accurate prediction for a rigid sphere in air. However, the calcula-
tion of an elastic sphere submerged in water is worse when compared
with the exact solution.

The reason for the discrepancy between the GTD and the exact
solution lies in the assumption that the impedance Za is purely a
function of (ka) and not also dependent on the mode number n .

This then allows for water-borne creeping waves arouﬁd the impedance
surface of the shell. But, it excludes the structure borne creeping
waves, which were shown to be dominant in the illuminated and shadow
zones of shells in water. Since the GTD was to be used for any shaped
elastic shell where an exact expression for the shell impedance Za

is not available, the method does not appear to be useful in predicting
the near field of a general elastic structure in water when the shell

impedance is approximated by any one of the six impedances given above.
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CHAPTER V

EXPERIMENT

5.1 Introduction
The sound propagation near the surface of an elastic spherical

thin shell vibrating in an acoustic medium due to a spherical sound

source located at a point near the surface has been studied theoretic-
ally in the previous chapters. Both the wave harmonic and the
geometrical theory diffraction methods have been employed in this
study.

This chapter describes experimental techniques for vibration
and sound measurement. These techniques were employed to determine |
the sound field near the surface of a spherical shell and the vibration
field of the shell, and to provide experimental verification of the
predictions of the theoretical analyses. The measurements were
carried out into phases. When making experiments in the anechoic
chamber located at the Garfirld Thomas Water Tunnel Building of ARL
of The Pennsylvania State University, the sound visualization technique

was used. The results were expressed graphically in terms of the phase

and directivity plots. When the shell was submerged in the anechoic
water tank located in the Applied Research Laboratory at The Pennsyl-
vania State University, the pressure directivity was measured and
plotted. The resonance frequencies were also measured when the shell

was submerged in air or water.
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5.2 General Experimental Approach

The resonance frequency measurements were performed for both
l4-gauge (actual thickness h = 0.0514 inch) and 8-gauge (actual
thickness h = 0.1069 inch) thick spherical shells. The directivity
pattern measurements were taken on an 8~gauge shell. Each of these
shells is 16 inches in diameter and is constructed of duralumin
material. The spherical shells were fabricated from two hemispherical
shells welded at the equator and the welds ground smooth.

The experimental measurements were carried out in the anechoic
chamber [29] at the Water Tunnel Building and the anechoic water tank
[30] at the Applied Science Building. The anechoic chamber was built
initially in support of this experimental program to investigate the
fluid loading effects on elastic structures. It has internal dimen-
sions of 11 x 12 x 18 feet. The sound absorbing walls are composed
primarily of rock-wool fiberglass insulation, air voids, and wood
frame members. It is considered as a semi-anechoic for frequencies
less tnan 1 kHz and moderately anechoic for higher frequencies. The
water~-filled anechoic tank, which is 12 feet long, 4 feet wide, and
11 feet deep, is lined with Insulkrete wedges. Between 20 and 30 kHz,

the tank is better than 90 percent absorbent. The absorption falls

off rapidly below 20 kHz. The spherical shells were located near the

center of the tank or the chamber. The source and receiver were placed
on a horizontal plane through the center of the shell perpendicular to
the walls of the tank or the chamber.

The resonances of spherical shells were measured by plotting
the frequency response and the modal pattern. A continuous sinusoidal

wave was applied to the shaker to excite the shell in both water and

e,
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air. 1In the case of the directivity pattern measurement, with the
shell excited by an acoustic spherical source, a pulsed wave was used
in water, while a C.W. source was used in air. The pulsed width was
varied from 0.2 ms to 0.99 ms and the pulse was repeated every 102 ms
to allow for the decay of the pulse in the tank. The total sound
pressure was measured by a hydrophone rotated around the shell with a
speed 0.69° per second. For measurements where both the source and
the field points were located near the surface of the shell, the
repetition rate assures that the receiver will adequately measure the
signal before the arrival of the next pulse. Furthermore, in such a
slow motion, the measured arm does not create any significant flow
noise affecting the measurement of the acoustic pressure.

In the experiments to measure the directivity of the pressure
field in air, the measured data was recorded on film, and was digitized
by use of Vision and the Hybrid Computer at The Pennsylvania State
University. The resulting data were represented in three dimensions

with relief representing amplitude.

5.3 Experimental Equipment

The structures under investigation were two thin elastic
duralumin spherical shells. The radius of both shells was 8 inches,
and these shells have thicknesses of 0.1069 inch and 0.0514 inch,
respectively. The former shell was suspended in water by four 40-1b
fishing strings, 1/64 inch in diameter, attached to the shell by means
of four eye-bolts, 1/8 inch in diameter, screwed to the surface.

Three of them were located at the vertices of a one-inch equilateral

triangle at the pole; the fourth was located at the center of the
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triangle. All bolts were sealed with Silastic to prevent water from
leaking into the shell and rust. The thinner shell was suspended in
a similar manner, but with one eyebolt screwed on an aluminum adapter
(1/2 inch in diameter, 1/4 inch thick) which was attached to the shell
with epoxy resin. Both of the shells were anodized to prevent
corrosion. The geometrical configuration is shown in Figure 5.1.

The holographic side scanner for recording the nearfield
pressure was composed of a measuring arm, and a turntable as shown in
Figure 5.2. The measuring arm was made of plexiglas because its
characteristic impedance is approximately the same as that of water.
The scanner has a 180-degree scanning range (the old one nas a 350-
degree scanning angle approximately). The receiver, which is attached
to the measuring arm, could move away from the surface of the shell up

to a distance of 6". The stepping distance of the receiver from the

shell can be varied in steps by the use of a stepping motor. This
flexibility will provide a method for recording the directivity of the
pressure field of the shell at any distance from the surface in a 180°
rotation.

For the measurements of the pressure field in the neighborhood
of a spherical shell insonified by a spherical source in water, the
Atlantic Research LC-32 hydrophone was used as a source (S), while the
LC-10 was used as a receiver (R). These hydrophones are omnidirection-
al both as projector and receiver in the horizontal plane (the plane
perpendicular to the axis of the hydrophone) over the frequency range
used. The source was suspended 8 inches away from an aluminum support
arm, while the receiver attached 6 inches away from the plexiglas

supporting arm pivoted about the surface of the shell (see Figure 5.2).
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ROTATED PLATFORM OF THE HOLOGRAPHIC-SCANNER
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Figure 5.2 Geometrical configuration of the holo-scanner
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When the measurements were carried out in the anechoic chamber, a
one-inch diameter loudspeaker functioned as a source, and the receiver
was the Telectret condenser microphone, Model 5336. It has a dimen-
sion of 0.285" x 0.163". The frequency response is flat up to 16 kHz.
For the measurement of the shell's resonance frequencies, a
1/4-1b. Wilcoxon F5B driver was used to vibrate the shell and the 212

impedance head was used as a force measuring gauge as well as an

accelerometer to measure the point acceleration of the vibrating shell.

The impedance head was attached to an aluminum adapter (1/2 inch in
diameter, 1/4 inch thick) glued to the surface of the shell. 1In order
to use the unit in water, a rubber balloon was used to house the
driving unit to prevent wetting. The balloon was glued to the shell

and the air inside the balloon was squeezed out.

5.4 Measurement of the Resonance Frequencies

For the measurement of the resonance frequencies of the two
spherical shells, two precedures were carried out. First, the
measurements of the frequency response of the driving point inertance,
defined as the ratio of the acceleration of the shell's surface to the
applied force at the driving point, will provide the driving point
inertance frequency spectrum. The spectrum's peaks represent the
resonant frequencies of a structure within the frequency range.
Second, the mode shape is measured when the frequency of excitation

is fixed at the frequency corresponding to each peak.

5.4.1 Measurements in Air. In the experiments to measure the

driving point admittance, a sinuscidal wave or a random noise was

applied to the driver to excite the spherical shell. The shell's

i\"‘
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response was received by the attached impedance head and the output

was recorded by a two-channel digital signal processor made by Spectrum
Dynamics [32]. The result was displayed on a cathode ray screen and/or
recorded on an X-Y plotter.

The digital signal processor is a Fast Fourier Transform (FFT)
processor. The use of an FFT technique results in measurement of the
transfer function which is the ratio of the acceleration of the
structural surface to the system forcing function. This transfer
function, the inertance, can be measured to a high degree of accuracy
by means of a processor. The operational setup is shown in Figure 5.3.

To measure the mode shape of the spherical shell, an acceler-
ometer replaces the impedance head, and the voltage was recorded every
5° around the equator of the shell to measure the response. The
measurement sequence was as follows: (1) located the accelerometer at
180° from the driver, and searching for an excited frequency (resonance
frequency) around a selected peak frequency of the driving point
inertance until a comparable large response was observed on the
oscilloscope; and (2) placing the accelerometer every 5° around the

equator of the shell to measure the response over 180°.

5.4.2 Measurements in Water. To measure the frequency response

of the force excited spherical shell, the experimental setup in air was
used except that the LC-10 hydrophone functioned as a receiver located
at 180° from the driver instead of the impedance head. In the mode
shape measurements, the procedure was the same as that in air. How-
ever, the receiver, LC-10 hydrophone, was rotated around the shell to

measure the directivity of the pressure field by means of the
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holographic scanner. The output of the receiver was recorded on an

X-Y plotter. The receiver was located near the shell's surface.

5.5 Measurement of the Directivity Pattern

In this measurement, the near field of a spherical shell
insonified by an acoustic spherical source was studied. The source
and the receiver were located within one wavelength from the surface
of the shell. The source was fixed at one extreme end of the
scanner (reference zero degree) while the receiver was rotated about

the equator of the shell in the horizontal plane.

5.5.1 Measurement in Water. In the measurement of the

acoustic directivity field of a spherical shell, submerged in water
and excited by a pulsing spherical source, the received signal was

the sum of direct signal and indirect signal (reflected, creeping or

diffracted wave). There was a time delay between the received signal
and the reference signal. Therefore, the output from the receiver
hydrophone was gated to pass the signal that arrived after a time
corresponding to the travel time from the source to the surface and
then to the receiver, ¢

Technically, the pulse width of a signal is greater than 3/f ,

.

where f 1s the source frequency. It means that the lower the

frequency, the greater the pulse width. The pulse width for the
source frequency was varied from 0.2 ms to 0.99 ms to provide a
sufficient number of full cycles impinging on the surface. The pulse
was repeated every 102 ms to insure that all echoes from the tank
boundaries or other surfaces had decayed sufficiently before the

next pulse was generated.

—patin T e
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The total pressure field was measured by the rotated LC-10
hydrophone continuously, while the LC-32 hydrophone, functioning as
a source, was fixed at a reference zero degree. The output from the
hydrophone was filtered, amplified, and gated. The measured signal
was recorded on an X-Y plotter. The block diagram of the experimental

setup is shown in Figure 5.4.

5.5.2 Measurements in Air. In the measurement of the

directivity pattern in air, a different approach was employed instead
of the method mentioned in Section 5.5.1. This technique may be
called the sound field visualization technique. By applying this
technique, the amplitude and the phase of the pressure field can be
recorded on photographic film,

The received signal goes through a monitoring circuit which
converts the acoustical signal into a light signal via a light
emitted diode (LED). The measurement block diagram is shown in
Figure 5.5. The monitoring circuit is a kind of phase circuitry [31].
This circuit provides phase comparison between two signals, the
driving signal and the received acoustic signal. The comparison
between the phase of the driving signal and the phase of the received
signal produces an output pulse of varying width depending on the
phase difference between the two signals. A dc voltage ramp corre-
sponding to the pulse width will turn the LED on for a 0° - 90° phase
shift (high dc ramp voltages) and off for 90° - 180° phase shift (low
dc ramp voltages).

The amplitude circuitry is a comparator circuit [31] which is

adjusted to turn the LED on or off when the voltage of the received

[V
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signal is greater or less than the set upper or lower level of the
circuit, respectively.

An overall sketch of the experimental setup is shown in
Figure 5.6. The spherical shell, hung in the middle of the anechoic
chamber, was insonified by a one-inch diameter speaker. The micro-
phone, attached at the end of a small plastic stick, scanned around
the surface of the shell on the equatorial plame. The LED was located
right below the measuring boom about 4 inches behind the microphone,
whose brightness was calibrated to correspond to the intensity of the
sound field. This varying light intensity was recorded by means of a
camera set at a long time exposure. The typical measurement time for
one picture was about 2 hours for an 8-inch horizontal scanned dis-
tance at the stepping rate of 1/8 inch/scan. The resulting photo-~
graph was then digitized and processed in three dimensions with relief

representing amplitude.

5.6 The Results of the Measurement of Resonance Frequencies

The driving point admittance in air of the thin and thick
shells are shown in Figures 5.7a - 5.8b, respectively. Both shells
exhibit an antiresonance in the low frequency range as was predicted
earlier and shown in Figures 3.5 and 3.6a. In the higher frequency
range, the measured resonances are the peaks of the admittance.

These resonance frequencies were identified by the measurements of
the mode shape and the results are tabulated in Tables 5.1 and 5.2
for the two shells. The difference between the predicted and the
measured resonance frequencies is small for most of the measured mode

orders. The good agreement occurred in spite of the nonuniformity of

[ R
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Figure 5.6 Set-up for measuring sound pressure in an
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TABLE 5.1

MEASURED (f'n) AND CALCULATED (fn) RESONANCE

FREQUENCIES OF A SPHERICAL SHELL (h = 0.0514")
SUBMERGED IN AIR AND WATER

Air

fl
(kHz)

2.867
3.24606
3.526
3.598
3.710
3.767
3.804
3.912
3.972
4.032
4.092
4.176
4.315
4.461
4.591
4.701
4.771
4.906
5.081
5.293
5.521
5.800
6.043
6.341
6.720
7.088
7.376
7.763
8.172
8.601
9.049
9.516
10.000

6.160
6.160

Water

fl
(ehz)

0.764
0.945
1.074
1.178
l1.270
1.357
1.436
1.515
1.595
1.650
1.760
1.800
1.900
2.025
2.180
2.300
2.340
2.500
2.670
2.760
2,960
3.100
3.340
3.500
3.640
3.800
4.150
4.500
4,900
5.350
5.820
6.850
6.850




e ekt

TABLE 5.2
MEASURED (f'n) AND CALCULATED (f ) RESONANCE .1
FREQUENCIES OF A SPHERICAL SHELL (h = 0.1069™) ~~
SUBMERGED IN AIR AND WATER 1
Air Water
1 L}
n £ n fn £ n
(kHz) (kHz) (kHz) (kHz)
2.668 2.877 1.002 1.050
3.411 3.460 1.270 1.320
3.633 3.601 1.459 1.468
3.754 3.758 1.612 1.610
3.841 3.855 1.746 1.740
3.921 3.943 1.874 1.863
4,009 4.059 2.001 1.989
4.155 4.092 2.133 2.180
4,248 4.192 2.277 2.300
4.413 4,343 2.437 2,480
4,614 4.548 2.618 2,680
4.856 4.737 2.823 2.890 ]
5.141 5.007 3.056 3.105 !
5,470 5.308 3.317 3.400 1
5.845 5.681 3.610 3.704
6.264 6.053 3.936 4,050
6.728 6.501 4.294 4.400
7.236 6.970 4.685 4,800
7.786 7.538 5.110 5.250
8.378 8.103 5.567 5.750
9,011 8.722 6.058 6.205
9.684 9.422 6.582 6.780
10.397 9.900 7.183 7.350
11.147 10.692 7.727 7.980
11.935 11.412 8.347 8.580
9.000 9.220
9.684 9.920
10.399 10.660
11.145 11.400
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the shell's thickness and the existence of the weld between the two
hemispheres making up each spherical shell.

The measured resonance frequencies for submerged shells in

water were obtained from the peaks in the driving point inertance
shown in Figures 5.9 and 5.10 for the thin and thick shells, respec-
tively. The measured resonances, as ldentified by the measured mode
shape, are tabulated in Tables 5.1 and 5.2, respectively, for thin
and thick shells. The agreement between the measured and predicted
resonances again is very good.

It should be noted that the good agreement between the pre-
dicted and measured resonance frequencies was attained only after a
thorough measurement of the thickness of the shell was made. The
manufacturer has supplied us with nominal thicknesses of 8-gauge and
14-gauge for the two shells. However, it has been found that the
8~gauge and the l4-gauge shells actually have thicknesses of 0.1069

inch and 0.0514 inch, respectively. This drop in thickness of two ‘

gauges has been confirmed by ultrasonic measurement. In this
! measurement, a Krautkramer-Branson Ultrasonic Pulse-Echo Thickness
; ; Gauge (Model CL 204) [33] was used, with an accuracy of the thickness

measurement of + 0.01%. The thickness of the shell was obtained by

: ) averaging the measured thickness of 120 points of two orthogonal

it ot

i : circles on the surface. The corrected resonances using the actual
thicknesses are those listed in Tables 5.1 and 5.2. All these data

v are shown graphically in Figures 5.11, 5.12, 5.13, and 5.14. The

‘ decrease in the thickness would have a slight change in the resonance

frequencies of shells in air. However, the error is more appreciable
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10 dB

DRIVING POINT INERTANCE
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Figure 5.9 . Measured driving point inertance of a
4 duralumin spherical shell with thickness
é h = 0.0514" 1in water
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Figure 5.10 Measured driving point inertance of a
duralumin apherical shell with thickness
h = 0.1069" in water
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Figure 5.11 Resonant frequencies of a duralumin
spherical shell with thickness

h = 0.0514" in air
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Figure 5.13 Resonant frequencies of a duralumin
spherical shell with thickness
h = 0.0514" 1in water
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Figure 5.14 Resonant frequencies of a duralumin
shperical shell with thickness
h = 0.1069" in water
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when one uses a thinner wall thickness for the resonance frequencies

of shells submerged in water,

5.7 Measured Frequency Spectra of the Shell's Response

The measured driving point admittance of the two shells in air
are shown in Figures 5.7 and 5.8 for the thin and thick shells,
respectively. These plots were obtained by use of the best available
digital mass cancellation scheme. These spectra exhibit high Q's at
all the resonances. The mean value of the measured spectra are also
shwon vs. the predicted mean value. The predicted mean value was
found to be higher than the measured value by approximately 3 dB for
both shells. This difference can be attributed to the fact that the
measured mean value of shells with low damping or high Q's can
fluctuate depending on the support condition of the shells, the
dynamic range of the measuring system, and the still inexact mass
cancellation scheme for structures with high Q.

The driving point inertance in water is shown in Figures 5.9
and 5.10 for the thin and the thick shells, respectively. Although
the mass cancellation scheme was not available for these measurements,
the absolute value of the maxima and minima are probably fairly well
approximated, since the Q's of the submerged shell were probably

lower than those in air.

5.8 The Results of the Directivity Pressure Field Measurement

Figures 5.15, 5.16, 5.17, 5.18, and 5.19 show the directivity
pressure ficld of the shell, h = 0.1069", submerged in water. The

pressure field was normalized by the corresponding free field at the
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receiver located at the antipode, denoted as FF(180°) . The source
was located at L 8.945" measured from the acoustic center of the
source (LC-32 hydrophone) at the reference zero degree, while the
receiver hydrophone, LC-10, was located at r = 8.567" for the
measurements shown in Figures 5.15 and 5.16. For Figures 5.17
through 5.19, the distances of the source and the receiver were

r, = 10.195" and r = 8.63" , respectively. The excited frequencies
were varied from ka = 4.4276 to 30 . The solid line with asterisks
represents the calculated result, and the solid line is the measured
data.

Generally, the discrepancy between the measured and calculated
pressure fields lies within a few dB. The largest discrepancy occurs
at the minima, especially for the near field at the high frequencies
patterns (see Figures 5.17 - 5.19).

For the measurement of the directivity pattern in air, the
sound visualization technique is used. Figure 5.20 represents the
photographic experimental data of sound propagation near the surface
of the spherical shell, h = 0.1069", insonified by a 1" diameter
speaker located at a distance 1/4" from the surface. The intensity
of the lighted area of the photograph represents the amplitude of
the sound field for ka = 18 ; scan range, 3/16" to 6". This result
is shown in three dimensions with relief representing amplitude in
Figure 5.21. Figure 5.22 is a three-dimensional theoretical plot of
the predicted directionality field at the same frequency. (

As seen in Figures 5.20 and 5.21, there is a bright spot at

the antipode as expected from the theory (see Figure 5.22). There
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speaker

Figure 5.20 2-D photographic experimental data of sound
field near a shell with thickness h = 0.1069" .
insonified by a 1" diameter speaker for
ka = 18 in air
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speaker

Figure 5.21 3-D measured directivity pattern of
a shell with thickness h = 0.1069"
for ka = 18 in air
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is a dim zone for angles off the antipode up to about 90°. Actually,
it is a weak sound zone (see Figure 5.22) when compared with the
bright spot at the antipode and the zone near the source. The
voltage level of the comparator circuit has to be adjusted to have

a considerably better dynamic range in the picture when compared with
the predicted pattern. If the level is set too high, the sound

pressure (brightness) in the shadow zone including the antipode

area may not show in the picture. On the contrary, if the level is
too low, there will result a completely bright annular. It should

be recognized that the brightness (the amplitude) is limited by the
degree of sensitivity of the film. If the light intensity of the LED
exceeds the intensity sensitivity of the film, then all intensity

L beyond this limitation will have the same intensity. This result

causes a flat response in the zone near the source as shown in
Figure 5.20.
] : Figures 5.23 and 5.24 show the photographic recording in

two~dimensional cross-section and three-dimensional graphic,

respectively, for the same system with ka = 22 . Figure 5.25

E represents the predicted pattern in three-dimensional graphic

; display. It is clear that the sound field as shown in Figure 5.22
; changes rapidly in the zone near the antipode as predicted. The

bright spot at the antipode is always there because the sound field

is in focus.
Although the sound visualization technique in some ways

cannot be as powerful as the method described in the previous

section in terms of obtaining detailed data, it is an economic and
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Figure 5.23 2-D measured directivity pattern of a shell with
thickness h=0.1069" for ka=22 in air
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a shell
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easy way to map the whole sound field of a spherical shell. And one
can visualize the sound field around the shell.

This technique enables the detection of the amplitude and the
phase. Figures 5.26, 5.27, and 5.28 show the phase pattern of the
acoustic near field of the spherical shell, h = 0.1069", insonified
by a 1" diameter speaker located 1/4" from the shell's surface for
frequencies ranging from ka = 6 to 30. The scan range is from 1/8"
to 5". In viewing these annular phase patterns, the black and white
stripes seem to be the creast and trough of a spherical sound wave
travelling out from the source. The black stripes are the result of
a destructive interference between the incident wave and the in-~
direct wave (received wave), while the white stripes are due to a
constructive interference. In the shadow zone, the interference is
not as simple as the zone near the source. It has an irregular
interference pattern. The irregular area increases with increasing
frequency. It is evident that the number of black and white stripes
increases and the stripes become narrower as the frequency increases
because the interference areas increase in number.

In the following series of pictures, Figures 5.29 through 5.32,
the interference phase pattern is shown to be influenced by the source
position and its interaction with the shell. Figure 29 shows the
phase pattern in the absence of the shell. The speaker, driven with
ka = 22.494 , is located at a distance 10" from the surface of the
imaginary sphere. The scan range is 0.125" to 8.44". 1In viewing
this result, the wave form is that of a spherical wave spreading

outward. In the presence of the shell, the uniform wave form has

-
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i speaker

v Figure 5.26 Measured phase pattern of a shell with
thickness h = 0.1069" for ka = 6
: : in air
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Figure 5.27 Measured phase pattern of a shell with
thickness h = 0.1069" for ka = 10
in air )




Figure 5.28 Measured phase pattern of a shell with

thickness
in air

speaker

h = 0.1069"

for

ka

14




&

Figure 5.29

Measured phase pattern for a shell with
thickness h = 0.1069" for ka = 18
in air

speaker




Figure 5.30 Measured phase pattern for a shell with
thickness h = 0.1069" for ka = 22
in air
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Figure 5.31 Measured phase pattern for a shell with
thickness h = 0.1069" for ka = 26
in air
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Figure 5.32 Measured phase pattern for a shell with
thickness h = 0,1069" for ka = 30
in air
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been disturbed due to the presence of the reflected and diffracted
waves. In the zone near the source, the distortion of the wave form
is low. As the observer point moves away from the source, distortion
becomes obvious, especially in the area near the surface because the
direct wave no longer reaches there and the diffracted wave dominates
that area (shadow zone). Far away from the source in the shadow zomne,
the wave jbrm of the near field becomes distorted because of strong
interference. Figures 5.30, 5.31, and 5.32 show a series of phase
patterns for the speaker located at varied distances ranging from

10" to 5/6" away from the shell excited at ka = 22.494 in air.

The field in the illuminated zone resembles that of a point source

in most of the pictures. However, the field in the shadow zomne is
primarily due to the weak diffracted (creeping) waves, so that the
phase of the pressure is practically unchanged.

From the experimental results and analyses in this chapter,
the use of the holographic scanner was shown to give a detailed
directivity measurement as well as a sound visualization recording.
The detailed measurement only provides a single recording, while
the sound visualization technique (SVT) gives a completed image of
the phase interference and the diffracted pressure intensity. Also,
the SVT supplies information about the location and the driving
frequency of the source. The disadvantage of the SVT is that it

cannot provide a sufficient dynamic range for use in theoretical

verification.




CHAPTER VI
SUMMARY AND CONCLUSIONS

6.1 Introduction

In this study, the vivrational response of submerged spherical
shells and the radiated acoustic nearfield of these shells was
investigated. An elastic spherical shell was excited to vibration by
either a normal point force or an acoustic point source. The equations
of motion of an elastic shell was derived by Hamilton's principle, with
the excitation force field included in this derivation. The shell's
theory used is that for a thin shell with oniy extensional and bending
deformations included.

The solution for the vibrational response of a point excited
spherical shell and the resulting acoustic nearfield was predicted by
the summation of modal response. These solutions were verified by
exciting two duralumin spherical shells to vibration in air and in
water and recording the driving point admittance ;Qd the resonance

frequencies.

In another part of the investigation, the nearfield of an

elastic spherical shell due to an acoustic point source was predicted

by the wave-harmonic series as well as by the Geometrical Theory of

Diffraction (GID). The nearfield acoustic perssure was measured in

e

air by use of specially constructed apparatus which produced a vicual

in water was also made by use of a specially constructed holographic

¢

X

? » representation of the acoustic field. Measurement of the nearfield
'

|

scanner. These measurements were used to verify the predicted

directivity patterns.

*

.
i
]
!




6.2 Point Excited Spherical Shells

The vibrational response of point force excited spherical
shells was predicted by use of modal summation. The mode shapes of
vibration and the resonance frequencies of such shells were then
compared to the measured ones. The resonance frequencies in air were
measured for mode numbers up to 34 and found to be within 5% of the
predicted ones. Since the deformation energy influences the resonance
" frequencies, this agreement indicates that a deformation theory which
includes extensional and bending deformation is adequate for describing
the shell's dynamic response. Thus, there is no need to further refine
the deformation by including shear deformation and rotatory inertia.

For a point excited shell submerged in water, the resonance
frequencies were computed by use of an iterative technique. The
iteration starts with the known resonance frequencies of the shells
in air. The resonance frequencies of the shells in water are lower
than those in air because of the virtual mass of the water being
displaced must be added to the mass of the shell. The resonance

frequencies and mode shapes of the two shells were measured for mode

numbers up to 34. Again, a good agreement was obtained, indicating
that the model for the acoustic virtual mass of the water was adequate.

The mean value of the driving point admittance spectra of the

vibrating shells in air were also computed exactly by the modal
summation and also by Skudrzyk's Mean Value Theorem and found to agree
very well. However, when these were compared with the measured mean
values, they were found to be 3 dB lower than predicted. This can be
attributed to the increase in the modal density by the extra split

modes occurring in a spherical shell made of two hemispherical shells
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welded at the equator. Such an increase in modal density usually

predicts lower mean values, see Equation (2.58).

6.3 Acoustic Nearfield of a Point-Source Excited Spherical Shell

The acoustic nearfield pressure of a spherical shell excited by
a point source was computed by use of wave harmonics. The acoustic
nearfield includes the direct, the reflected, the diffracted, and most
importantly, the radiated field. The weak diffracted waves are due to
acoustic-borne waves travelling around the sphere. The radiated waves
are due to the vibration of the shell, i.e., the structure-borne waves.

In the illuminated zone of a shell in air, the nearfield looks
like that of rigid spheres, because the direct and reflected waves
dominate the radiated waves. However, in the shadow zone, only
diffracted and radiated waves exist and, hence, the nearfield is
dominated by the radiated waves. These were confirmed when the two
spherical shells were insonified by an acoustic loudspeaker and a
microphone was used to detect the acoustic pressure levels in the
neighborhood of the shells in air. The whole test system was located
inside an anechoic chamber.

In the illuminated and shadow zones of a spherical shell
submerged in water, the radiated waves dominate the other waves.
Thus, the structure-borne waves were found to dominate the diffracted
waves by as much as 80 dB at low frequencies, and 60 dB at the high
frequencies in the shadow zone. The measurements of the nearfield of a
spherical shell submerged in water was made in a large water tank.

The measured directivity patterns agreed well with the predicted ones

up to ka = 30 .
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The GTD method was used to compute the diffracted waves in the
shadow zone. The spherical surface was given a real or complex
locally reacting impedance. The diffracted rays (creeping waves)
were found to be highly attenuated by the absorption of the surface.
Thus, the GTD predicted levels which are much lower than those

predicted by the exact solution which included radiated waves.

L Various surface impedances were used in these calculations, such as
the characteristic impedance of the shell material, plate wave

impedance, etc. The GTD predicted levels for the hardest impedance
(pc of duralumin) which were 60 dB lower than the exactly computed

ones.

6.4 Conclusions

The study of the nearfiel& of spherical shells was carried out

to investigate analytically the effect of fluid loading on the
response of the shell and to verify these observations by conducting
controlled tests in air and in water. Conclusions drawn from the
analytical and experimental results include:
a. The vibrational response of the shell in air and
water can be modeled by a thin shell theory that

includes extensional and bending deformation only.

b. The modes of vibration in air and water are identical,

the only difference between them is the resonance

c. If the acoustic loading is heavy, such as water, one

[ frequencies being lower in water than those in air.

E cannot scale the in-air experiments to those in water.
|

i

|

i
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The acoustic nearfield of an elastic structure
resembles that of a rigid body in air. However,

the nearfield pressure of a shell in water is
dominated by the vibrational energy radiating

into the nearfield.

The GTD method cannot be used to predict the nearfield
of an elastic structure in water because the impedance
used in the computations must be the exact vibrational
impedance of the shell. Otherwise, any other model
for the impedance of the shell would predict the weak

creeping wave field only.

6.5 Suggested Future Research

There are still more questions that have not been answered in

this study.

These pertain to the general applicability of analytic

methods for the prediction of the nearfield of insonified elastic

structures. Specifically, the following areas need further
investigations:
1. The mndal response of the shell in the higher frequency

range. Investigate the need for more exact theory of
deformation.

The need to use the GTD method for general elastic
structures requires further studies into the possibility

of including structure-borne vibrational waves in theory.
The development of new scaling laws by use of special tests
in air, since direct use of scaling from air to water is

not feasible.

bt i e o LA addb
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APPENDIX A

DERIVATION OF THE SHELL'S EQUATIONS

OF MOTION

In order to obtain a spherical shell's equations of motion,
Equations (2.9) and (2.10), the Hamilton's principle as shown in

Equation (2.1) is employed. Let the function

F = T-V+Q , (A.1)

where F = F(u, ug» u, W, Wgs Wggs w) . The integral form of the

Hamilton's equation can be exvressed in a differential form as:

| E_ial’,,dz[%‘] _ 4 oF
, 3q ~ d8 3q, " ;o2 (3age) T dt g

= 0 s (A.2)

where q is a spatial coordinate. Consider a tangential or radial

motion, the coordinate u or w replaces q , then:

oF d OF d 9F
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and
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where wg = 3G Wgg =7 *¥ T3¢ v 36 - Ve r M 4Tk

. «
In regard to the strain energy density, the total kinetic

: energy, and the potential function as shown in Equations (2.4),

3 (2.7), and (2.8), respectively,
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Substituting Equations (A.5), (A.6), and (A.7) into Equation (A.3),

one obtains:

- 2
a+ B)L(v + cot?0)u - cotd 32 - fgg] + [Beot?8 + (1 + V) + BUISY

2 3 2
- BcotH 3 ; - B 9 g + 1 Ev o
90 36 8

a2 azu
at?

0 . (A.8)

Similarly, differentiating the function F with respect to w , one

obtains:
oF v 9
™o - 50t

4
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Substituting Equations (A.9), (A.10), (A.11), and (A.12) into
Equation (A.4), one obtains:

: 33u 32u 2 Jdu
s B—3+26cot6-——2--[(1+\))(1+B)+Bcot e]m
96 20
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where B8 = (h/a)2/12 .




APPENDIX B

DERIVATION OF THE DIFFRACTION FACTOR

(2) D on(D)
The derivation of the term thn (ka) / 53 [th (ka)]s=sn
and the boundary condition of an impedance shell is outlined in this
appendix.
The boundary condition of the spherical shell is presented in
Equation (4.9) as:
hél) (ka)
n
—— = 12 . (B.1)
h;l)'(ka) a

n

By making use of the properties:

~— (1)
ht(ll) ) =5 a2 (x)
and
) 1 (1)
hél)' (x) = /—2"; [n+1/2 () - 9% n+1/2 (X)J
N V= (l)c
N /.%% n+1/2 (x) R x> 1, (B.2)

Equation (B.1l) can be expressed in terms of the cylindrical Hankel

function as:

Hgl) (ka)
n
—_—— = iZ , (B.3)
H(l)'(ka) a
%n
where S, T M, T 1/2 . Furthermore, the cylindrical Hankel function

can be presented in terms of the Airy function (24, 25, 28] as x N a

for large x:

N kB
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where A(qn) is the Airy function,
A(q) = [mcos(t3 - qt)dt (B.5)
o

and

= (331/3 13 @ x . (B.6)

For the poles of the Hankel function in Equation (B.3):

ka) 1/3 ei7T/3 . (B.7)

s, = ka + q, (?r

The derivative of the Hankel function with respect to the argument is

obtained by taking a differentiation of Hél)(x) in Equation (B.4):
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Substituting Equations (B.5) and (B.8) into Equation (B.3), one
obtains the boundary condition in the form of the Airy function:

A'(q) 157/6 ka,1/3 -1
— e z

& a (B.9)

4V = 2
For large x , s, VM, » where U =5 + 1/2 , and by using the

relationship in Equation (B.2), one can reduce
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where th (x) = hs (x) - 1i2a h; (x) . Taking a differentiation of
n n n
Equations (B.4) and (B.8) with respect to the order of n , one has:
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where A"(q) = - q/3A(q) . Using the relationship in Equations (B.4),
(B.8), (B.11), (B.12), and
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Equation (B.10) can, therefore, be reduced in terms of the Airy

functions:
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